IDEAS home Printed from https://ideas.repec.org/a/zib/zbnees/v5y2021i1p37-46.html
   My bibliography  Save this article

A Review Of Wetlands And Coastal Resources Of The Niger Delta: Potentials, Challenges And Prospects

Author

Listed:
  • D.C

    (Centre for Petroleum Geosciences, University of Port Harcourt, Nigeria)

  • Nwankwoala

    (Department of Geology, University of Port Harcourt, Nigeria)

  • H. O

    (Department of Geology, University of Port Harcourt, Nigeria)

  • Okujagu

    (Department of Geology, University of Port Harcourt, Nigeria)

Abstract

Wetlands are areas where water covers the soil or is present either at or near the surface of the soil all year or for varying periods of time during the year, including during the growing season. The Niger Delta in Nigeria is the largest wetland in Africa and the third largest mangrove forest in the world with three sites listed as Ramsar Wetlands of International Importance. The Niger Delta wetlands and coastal resources are of high monetary significance to the local dwellers and the nation in general. This highly coveted wetland is changing rapidly, raising concern for its attendant implication on the communities relying upon its ecosystem potentials. A comprehensive data of the facilities delivered by wetlands is a significant key for real-time wetland ecosystem management. Existing literatures, were synthesized for this review on the potentials, challenges and prospects of the Niger Delta wetlands. It is pertinent from this review that the Niger Delta Wetland is wealthy in aquatic and terrestrial biodiversity of high financial significance to development of Nigeria, and is being challenged by natural and human activities such as dam construction, logging/lumbering, over-grazing, unrestrained tilling of soil for crop production, wetland reclamation, dredging, oil and gas exploration, over-fishing, invasive plant infestation, pollution, Coastal Infrastructure construction, poverty, droughts, desertification, sand storm, alien invasion, sea rising, erosion, etc. The Niger Delta Wetlands harbor tremendous wealth and supply many services that are necessary for human well-being such as location for spiritual renewal and recreation (eco-tourism), flood control, climate regulation, crop pollination, soil regeneration, raw material, energy, air and water purification; food chain supply, and medicines (Herbal solutions). This review postulates that in view of the immense significance and status of the Niger Delta Wetlands, effective and sequential monitoring be put in place by the establishment of centers of excellence in all universities in the Niger Delta Region with emphasis on studying the rich economic diversity of the wetland using remote sensing and Geographic Information System technologies for efficient conservation and management of the wetland resources.

Suggested Citation

  • D.C & Nwankwoala & H. O & Okujagu, 2021. "A Review Of Wetlands And Coastal Resources Of The Niger Delta: Potentials, Challenges And Prospects," Environment & Ecosystem Science (EES), Zibeline International Publishing, vol. 5(1), pages 37-46, March.
  • Handle: RePEc:zib:zbnees:v:5:y:2021:i:1:p:37-46
    DOI: 10.26480/ees.01.2021.37.46
    as

    Download full text from publisher

    File URL: https://environecosystem.com/download/14768/
    Download Restriction: no

    File URL: https://libkey.io/10.26480/ees.01.2021.37.46?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. de Groot, Rudolf S. & Wilson, Matthew A. & Boumans, Roelof M. J., 2002. "A typology for the classification, description and valuation of ecosystem functions, goods and services," Ecological Economics, Elsevier, vol. 41(3), pages 393-408, June.
    2. International Water Management Institute (IWMI)., 2006. "Working wetlands: a new approach to balancing agricultural development with environmental protection," IWMI Water Policy Briefings H039285, International Water Management Institute.
    3. Oecd, 2009. "Climate Change and Africa," OECD Journal: General Papers, OECD Publishing, vol. 2009(1), pages 5-35.
    4. Barry W. Brook & Julian J. O'Grady & Andrew P. Chapman & Mark A. Burgman & H. Resit Akçakaya & Richard Frankham, 2000. "Predictive accuracy of population viability analysis in conservation biology," Nature, Nature, vol. 404(6776), pages 385-387, March.
    5. Mitsch, William J. & Gosselink, James G., 2000. "The value of wetlands: importance of scale and landscape setting," Ecological Economics, Elsevier, vol. 35(1), pages 25-33, October.
    6. Emmanuel N. Ogamba & Sylvester Chibueze Izah & Erepadei Omonibo, 2016. "Bioaccumulation of Hydrocarbon, Heavy Metals and Minerals in Tympanotonus Fuscatus from Coastal Region of Bayelsa State, Nigeria," International Journal of Hydrology Research, Conscientia Beam, vol. 1(1), pages 1-7.
    7. Emmanuel N Ogamba & Sylvester Chibueze Izah & Erepadei Omonibo, 2016. "Bioaccumulation of Hydrocarbon, Heavy Metals and Minerals in Tympanotonus Fuscatus from Coastal Region of Bayelsa State, Nigeria," International Journal of Hydrology Research, Conscientia Beam, vol. 1(1), pages 1-7.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scemama, Pierre & Levrel, Harold, 2019. "Influence of the Organization of Actors in the Ecological Outcomes of Investment in Restoration of Biodiversity," Ecological Economics, Elsevier, vol. 157(C), pages 71-79.
    2. Posthumus, H. & Rouquette, J.R. & Morris, J. & Gowing, D.J.G. & Hess, T.M., 2010. "A framework for the assessment of ecosystem goods and services; a case study on lowland floodplains in England," Ecological Economics, Elsevier, vol. 69(7), pages 1510-1523, May.
    3. Ayobami Aigberua* & Timi Tarawou, 2017. "Assessment of Heavy Metals in Muscle of Tilapia zilli from Some Nun River Estuaries in the Niger Delta Region of Nigeria," Academic Journal of Chemistry, Academic Research Publishing Group, vol. 2(9), pages 96-101, 09-2017.
    4. Natacha LASKOWSKI, 2013. "Optimal allocation of wetlands: Study on conflict between agriculture and fishery," Cahiers du GREThA (2007-2019) 2013-07, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    5. Dale, Virginia H. & Polasky, Stephen, 2007. "Measures of the effects of agricultural practices on ecosystem services," Ecological Economics, Elsevier, vol. 64(2), pages 286-296, December.
    6. Scheiter, Simon & Schulte, Judith & Pfeiffer, Mirjam & Martens, Carola & Erasmus, Barend F.N. & Twine, Wayne C., 2019. "How Does Climate Change Influence the Economic Value of Ecosystem Services in Savanna Rangelands?," Ecological Economics, Elsevier, vol. 157(C), pages 342-356.
    7. Namakando, Namakando, 2020. "Stakeholder perceptions of raw water quality and its management in Fetakgomo and Maruleng municipalities of Limpopo Province," Research Theses 334769, Collaborative Masters Program in Agricultural and Applied Economics.
    8. Aryal, Kishor & Ojha, Bhuwan Raj & Maraseni, Tek, 2021. "Perceived importance and economic valuation of ecosystem services in Ghodaghodi wetland of Nepal," Land Use Policy, Elsevier, vol. 106(C).
    9. Ian Bateman & Georgina Mace & Carlo Fezzi & Giles Atkinson & Kerry Turner, 2011. "Economic Analysis for Ecosystem Service Assessments," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(2), pages 177-218, February.
    10. Greenland-Smith, Simon & Brazner, John & Sherren, Kate, 2016. "Farmer perceptions of wetlands and waterbodies: Using social metrics as an alternative to ecosystem service valuation," Ecological Economics, Elsevier, vol. 126(C), pages 58-69.
    11. Watson, Keri B. & Ricketts, Taylor & Galford, Gillian & Polasky, Stephen & O'Niel-Dunne, Jarlath, 2016. "Quantifying flood mitigation services: The economic value of Otter Creek wetlands and floodplains to Middlebury, VT," Ecological Economics, Elsevier, vol. 130(C), pages 16-24.
    12. Martínez-García, Víctor & Martínez-Paz, José M. & Alcon, Francisco, 2022. "The economic value of flood risk regulation by agroecosystems at semiarid areas," Agricultural Water Management, Elsevier, vol. 266(C).
    13. Laxmi D. Bhatta & Sunita Chaudhary & Anju Pandit & Himlal Baral & Partha J. Das & Nigel E. Stork, 2016. "Ecosystem Service Changes and Livelihood Impacts in the Maguri-Motapung Wetlands of Assam, India," Land, MDPI, vol. 5(2), pages 1-14, June.
    14. Giuseppe Maggio & Marina Mastrorillo & Nicholas J. Sitko, 2022. "Adapting to High Temperatures: Effect of Farm Practices and Their Adoption Duration on Total Value of Crop Production in Uganda," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 385-403, January.
    15. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    16. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    17. Yanzi Wang & Chunming Wu & Yongfeng Gong & Zhen Zhu, 2021. "Can Adaptive Governance Promote Coupling Social-Ecological Systems? Evidence from the Vulnerable Ecological Region of Northwestern China," Sustainability, MDPI, vol. 13(20), pages 1-19, October.
    18. Comino, E. & Ferretti, V., 2016. "Indicators-based spatial SWOT analysis: supporting the strategic planning and management of complex territorial systems," LSE Research Online Documents on Economics 64142, London School of Economics and Political Science, LSE Library.
    19. Vermaak, Herman Jacobus & Kusakana, Kanzumba & Koko, Sandile Philip, 2014. "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 625-633.
    20. Nisse Goldberg & Russell L. Watkins, 2021. "Spatial comparisons in wetland loss, mitigation, and flood hazards among watersheds in the lower St. Johns River basin, northeastern Florida, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1743-1757, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:zbnees:v:5:y:2021:i:1:p:37-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing (email available below). General contact details of provider: https://environecosystem.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.