IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v261y2022ics0378377421006508.html
   My bibliography  Save this article

Translating open-source remote sensing data to crop water productivity improvement actions

Author

Listed:
  • Safi, Abdur Rahim
  • Karimi, Poolad
  • Mul, Marloes
  • Chukalla, Abebe
  • de Fraiture, Charlotte

Abstract

A widely promoted approach to tackle food insecurity and water shortage challenges simultaneously is to enhance crop water productivity (WP). Therefore, multiple international organizations have featured WP improvements as their major policy goal, and substantial public and private investments have been made in this domain. Advances in remote sensing allow accurate, rapid, and cost-effective WP analysis for agricultural monitoring. However, translating the data to actionable information seems fraught with difficulties, as it only provides spatial and temporal variability in WP and no information on the causes of the variability. This paper introduces a standard approach using open-source remote sensing data for diagnosing reasons behind WP variations, comparing high performing fields (bright spots) with low performing fields (hotspots). The framework is applied to a case study on the Bekaa Valley in Lebanon considering wheat, potato and table grapes. Six factors (crop water stress, irrigation uniformity, soil salinity, nitrogen application, crop rotation and soil type) were analysed to identify their influence on WP and yield. This paper reveals that the growth of wheat and potatoes is negatively affected by water stress in the critical crop growth stages, non-uniform irrigation and nitrogen stress. Also, it was found that potatoes grown on clay-loam soil has better WP and yield than potatoes grown loam soil. Such information with regard to WP factors assists practitioners to identify priority areas and actions aiming at cropfield level WP improvement. While acknowledging errors, uncertainties and caveats inherent to the use of remote sensing data, this paper shows the feasibility and practical usefulness of the diagnostic framework.

Suggested Citation

  • Safi, Abdur Rahim & Karimi, Poolad & Mul, Marloes & Chukalla, Abebe & de Fraiture, Charlotte, 2022. "Translating open-source remote sensing data to crop water productivity improvement actions," Agricultural Water Management, Elsevier, vol. 261(C).
  • Handle: RePEc:eee:agiwat:v:261:y:2022:i:c:s0378377421006508
    DOI: 10.1016/j.agwat.2021.107373
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421006508
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107373?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zwart, Sander J. & Bastiaanssen, Wim G.M., 2007. "SEBAL for detecting spatial variation of water productivity and scope for improvement in eight irrigated wheat systems," Agricultural Water Management, Elsevier, vol. 89(3), pages 287-296, May.
    2. Zhang, Heping & Oweis, Theib, 1999. "Water-yield relations and optimal irrigation scheduling of wheat in the Mediterranean region," Agricultural Water Management, Elsevier, vol. 38(3), pages 195-211, January.
    3. Darwish, T.M. & Atallah, T.W. & Hajhasan, S. & Haidar, A., 2006. "Nitrogen and water use efficiency of fertigated processing potato," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 95-104, September.
    4. Seckler, D., 1996. "The new era of water resources management: from \dry\ to \wet\ water savings," IWMI Research Reports H018206, International Water Management Institute.
    5. Tomislav Hengl & Jorge Mendes de Jesus & Gerard B M Heuvelink & Maria Ruiperez Gonzalez & Milan Kilibarda & Aleksandar Blagotić & Wei Shangguan & Marvin N Wright & Xiaoyuan Geng & Bernhard Bauer-Marsc, 2017. "SoilGrids250m: Global gridded soil information based on machine learning," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-40, February.
    6. Arnaud Caiserman & Dominique Dumas & Karine Bennafla & Ghaleb Faour & Farshad Amiraslani, 2019. "Application of Remotely Sensed Imagery and Socioeconomic Surveys to Map Crop Choices in the Bekaa Valley (Lebanon)," Agriculture, MDPI, vol. 9(3), pages 1-19, March.
    7. Molden, David & Oweis, Theib & Steduto, Pasquale & Bindraban, Prem & Hanjra, Munir A. & Kijne, Jacob, 2010. "Improving agricultural water productivity: Between optimism and caution," Agricultural Water Management, Elsevier, vol. 97(4), pages 528-535, April.
    8. Zwart, Sander J. & Bastiaanssen, Wim G. M., 2004. "Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize," Agricultural Water Management, Elsevier, vol. 69(2), pages 115-133, September.
    9. Jonathan A. Foley & Navin Ramankutty & Kate A. Brauman & Emily S. Cassidy & James S. Gerber & Matt Johnston & Nathaniel D. Mueller & Christine O’Connell & Deepak K. Ray & Paul C. West & Christian Balz, 2011. "Solutions for a cultivated planet," Nature, Nature, vol. 478(7369), pages 337-342, October.
    10. Cai, X.L. & Sharma, B.R., 2010. "Integrating remote sensing, census and weather data for an assessment of rice yield, water consumption and water productivity in the Indo-Gangetic river basin," Agricultural Water Management, Elsevier, vol. 97(2), pages 309-316, February.
    11. Karam, Fadi & Kabalan, Rabih & Breidi, Jolle & Rouphael, Youssef & Oweis, Theib, 2009. "Yield and water-production functions of two durum wheat cultivars grown under different irrigation and nitrogen regimes," Agricultural Water Management, Elsevier, vol. 96(4), pages 603-615, April.
    12. Zwart, Sander J. & Bastiaanssen, Wim G.M. & de Fraiture, Charlotte & Molden, David J., 2010. "WATPRO: A remote sensing based model for mapping water productivity of wheat," Agricultural Water Management, Elsevier, vol. 97(10), pages 1628-1636, October.
    13. Penning de Vries, Frits, 2005. "Bright spots demonstrate community successes in African agriculture," IWMI Working Papers H038220, International Water Management Institute.
    14. Mohamad M. Awad, 2019. "Toward Precision in Crop Yield Estimation Using Remote Sensing and Optimization Techniques," Agriculture, MDPI, vol. 9(3), pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hazimeh, Rim & Jaafar, Hadi, 2024. "Impact of ET and biomass model choices on economic irrigation water productivity in water-scarce basins," Agricultural Water Management, Elsevier, vol. 292(C).
    2. Sapino, Francesco & Hazimeh, Rim & Dionisio Pérez-Blanco, C. & Jaafar, Hadi H., 2024. "Socioeconomic impact of agricultural water reallocation policies in the Upper Litani Basin (Lebanon): a remote sensing and microeconomic ensemble forecasting approach," Agricultural Water Management, Elsevier, vol. 296(C).
    3. Rutger Willem Vervoort & Ignacio Fuentes & Joost Brombacher & Jelle Degen & Pedro Chambel-Leitão & Flávio Santos, 2022. "Progress in Developing Scale-Able Approaches to Field-Scale Water Accounting Based on Remote Sensing," Sustainability, MDPI, vol. 14(5), pages 1-22, February.
    4. Seijger, Chris & Chukalla, Abebe & Bremer, Karin & Borghuis, Gerlo & Christoforidou, Maria & Mul, Marloes & Hellegers, Petra & van Halsema, Gerardo, 2023. "Agronomic analysis of WaPOR applications: Confirming conservative biomass water productivity in inherent and climatological variance of WaPOR data outputs," Agricultural Systems, Elsevier, vol. 211(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zwart, Sander J. & Bastiaanssen, Wim G.M. & de Fraiture, Charlotte & Molden, David J., 2010. "A global benchmark map of water productivity for rainfed and irrigated wheat," Agricultural Water Management, Elsevier, vol. 97(10), pages 1617-1627, October.
    2. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    3. Zwart, Sander J. & Bastiaanssen, Wim G.M. & de Fraiture, Charlotte & Molden, David J., 2010. "WATPRO: A remote sensing based model for mapping water productivity of wheat," Agricultural Water Management, Elsevier, vol. 97(10), pages 1628-1636, October.
    4. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    5. Sharma, Bharat & Molden, D. & Cook, Simon, 2015. "Water use efficiency in agriculture: measurement, current situation and trends," Book Chapters,, International Water Management Institute.
    6. van Halsema, Gerardo E. & Vincent, Linden, 2012. "Efficiency and productivity terms for water management: A matter of contextual relativism versus general absolutism," Agricultural Water Management, Elsevier, vol. 108(C), pages 9-15.
    7. Sharma, Bharat & Molden, D. & Cook, Simon, 2015. "Water use efficiency in agriculture: measurement, current situation and trends," IWMI Books, Reports H046807, International Water Management Institute.
    8. Molden, David & Oweis, Theib & Steduto, Pasquale & Bindraban, Prem & Hanjra, Munir A. & Kijne, Jacob, 2010. "Improving agricultural water productivity: Between optimism and caution," Agricultural Water Management, Elsevier, vol. 97(4), pages 528-535, April.
    9. Wakchaure, G.C. & Minhas, P.S. & Ratnakumar, P. & Choudhary, R.L., 2016. "Optimising supplemental irrigation for wheat (Triticum aestivum L.) and the impact of plant bio-regulators in a semi-arid region of Deccan Plateau in India," Agricultural Water Management, Elsevier, vol. 172(C), pages 9-17.
    10. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Mahboob, M. Golam, 2023. "Simulation of water productivity of wheat in northwestern Bangladesh using multi-satellite data," Agricultural Water Management, Elsevier, vol. 281(C).
    11. Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
    12. Scheierling, Susanne M. & Treguer, David O. & Booker, James F., 2015. "Water Productivity in Agriculture: Looking for Water in the Agricultural Productivity and Efficiency Literature," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205677, Agricultural and Applied Economics Association.
    13. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    14. Zenobia Talpur & Arjumand Z. Zaidi & Suhail Ahmed & Tarekegn Dejen Mengistu & Si-Jung Choi & Il-Moon Chung, 2023. "Estimation of Crop Water Productivity Using GIS and Remote Sensing Techniques," Sustainability, MDPI, vol. 15(14), pages 1-14, July.
    15. Huang, Feng & Li, Baoguo, 2010. "Assessing grain crop water productivity of China using a hydro-model-coupled-statistics approach: Part I: Method development and validation," Agricultural Water Management, Elsevier, vol. 97(7), pages 1077-1092, July.
    16. Feng Huang & Zhong Liu & Bradley Ridoutt & Jing Huang & Baoguo Li, 2015. "China’s water for food under growing water scarcity," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 7(5), pages 933-949, October.
    17. Huang, Feng & Li, Baoguo, 2010. "Assessing grain crop water productivity of China using a hydro-model-coupled-statistics approach. Part II: Application in breadbasket basins of China," Agricultural Water Management, Elsevier, vol. 97(9), pages 1259-1268, September.
    18. Farooq, Muhammad & Hussain, Mubshar & Ul-Allah, Sami & Siddique, Kadambot H.M., 2019. "Physiological and agronomic approaches for improving water-use efficiency in crop plants," Agricultural Water Management, Elsevier, vol. 219(C), pages 95-108.
    19. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    20. Immerzeel, W.W. & Gaur, A. & Zwart, S.J., 2008. "Integrating remote sensing and a process-based hydrological model to evaluate water use and productivity in a south Indian catchment," Agricultural Water Management, Elsevier, vol. 95(1), pages 11-24, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:261:y:2022:i:c:s0378377421006508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.