IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v258y2021ics0378377421004480.html
   My bibliography  Save this article

Effects of hydroponic systems on yield, water productivity and stomatal gas exchange of greenhouse tomato cultivars

Author

Listed:
  • Fayezizadeh, Mohammad Reza
  • Ansari, Naser Alam Zadeh
  • Albaji, Mohammad
  • Khaleghi, Esmail

Abstract

The consumption of nutrient solution is very important in the production of vegetables, especially tomatoes. In this study, the effect of two hydroponic systems on yield components, nutrient solution efficiency, and stomatal gas exchanges of two greenhouse tomato cultivars have been investigated. This experiment is in the form of split plots in a randomized complete block design, with the treatment of tomato cultivars (V4-22 and Amira) and type of hydroponic cultivation system (open and closed) in which 3 replicates were implemented at Shahid Chamran University of Ahvaz. The studied traits included crop yield, fruit number, fruit weight, cluster weight, nutrient solution efficiency, and stomatal gas exchanges (net photosynthesis rate, stomatal conductance, transpiration rate, intercellular CO2 concentration, and leaf temperature). The results showed that the effect of the hydroponic system had a significant effect on the efficiency rate of nutrient solution usage, the number of fruits, the weight of the third, fourth, and sixth cluster, stomatal conductance, transpiration rate, and leaf temperature. The highest number of fruits, stomatal conductance, transpiration rate, and leaf temperature were measured in the open hydroponic system. The highest and lowest rate of water productivity performance were obtained in the closed system (33.70 kg/m3) and open system (21.84 kg/m3), respectively. The closed system increased water productivity for yield and biomass by 54.3% and 42%, respectively, as compared to the open system. Whatsmore, the highest and lowest water productivity per biomass were obtained in the closed system (48.91 kg/m3) and open system (34.42 kg/m3), respectively. Tomato cultivars had significant differences in crop yield. The highest and lowest crop yields were measured in V4-22 cultivar (3874.29 g per plant) and Amira cultivar (3648.70 g per plant), respectively. Based on the results, the closed hydroponic system was superior in terms of water and fertilizer saving without a significant effect on crop yield due to the reduction of nutrient solution consumption up to 96% and fertilizer consumption up to 97%.

Suggested Citation

  • Fayezizadeh, Mohammad Reza & Ansari, Naser Alam Zadeh & Albaji, Mohammad & Khaleghi, Esmail, 2021. "Effects of hydroponic systems on yield, water productivity and stomatal gas exchange of greenhouse tomato cultivars," Agricultural Water Management, Elsevier, vol. 258(C).
  • Handle: RePEc:eee:agiwat:v:258:y:2021:i:c:s0378377421004480
    DOI: 10.1016/j.agwat.2021.107171
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421004480
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107171?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grewal, Harsharn S. & Maheshwari, Basant & Parks, Sophie E., 2011. "Water and nutrient use efficiency of a low-cost hydroponic greenhouse for a cucumber crop: An Australian case study," Agricultural Water Management, Elsevier, vol. 98(5), pages 841-846, March.
    2. Neissi, Lamya & Albaji, Mohammad & Boroomand Nasab, Saeed, 2020. "Combination of GIS and AHP for site selection of pressurized irrigation systems in the Izeh plain, Iran," Agricultural Water Management, Elsevier, vol. 231(C).
    3. Atzori, Giulia & Guidi Nissim, Werther & Caparrotta, Stefania & Santantoni, Federico & Masi, Elisa, 2019. "Seawater and water footprint in different cropping systems: A chicory (Cichorium intybus L.) case study," Agricultural Water Management, Elsevier, vol. 211(C), pages 172-177.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dimitra I. Pomoni & Maria K. Koukou & Michail Gr. Vrachopoulos & Labros Vasiliadis, 2023. "A Review of Hydroponics and Conventional Agriculture Based on Energy and Water Consumption, Environmental Impact, and Land Use," Energies, MDPI, vol. 16(4), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. M. Aishwarya & R. Vidhya, 2023. "Study on the Efficiency of a Hydroponic Treatment for Removing Organic Loading from Wastewater and Its Application as a Nutrient for the “ Amaranthus campestris ” Plant for Sustainability," Sustainability, MDPI, vol. 15(10), pages 1-13, May.
    2. Hossein Yousefi & Saheb Ghanbari Motlagh & Mohammad Montazeri, 2022. "Multi-Criteria Decision-Making System for Wind Farm Site-Selection Using Geographic Information System (GIS): Case Study of Semnan Province, Iran," Sustainability, MDPI, vol. 14(13), pages 1-27, June.
    3. Li, Sien & Kang, Shaozhong & Zhang, Lu & Du, Taisheng & Tong, Ling & Ding, Risheng & Guo, Weihua & Zhao, Peng & Chen, Xia & Xiao, Huan, 2015. "Ecosystem water use efficiency for a sparse vineyard in arid northwest China," Agricultural Water Management, Elsevier, vol. 148(C), pages 24-33.
    4. Katsoulas, N. & Sapounas, A. & De Zwart, F. & Dieleman, J.A. & Stanghellini, C., 2015. "Reducing ventilation requirements in semi-closed greenhouses increases water use efficiency," Agricultural Water Management, Elsevier, vol. 156(C), pages 90-99.
    5. Xinchun Cao & Jianfeng Xiao & Mengyang Wu & Wen Zeng & Xuan Huang, 2021. "Agricultural Water Use Efficiency and Driving Force Assessment to Improve Regional Productivity and Effectiveness," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2519-2535, June.
    6. Wilian Rodrigues Ribeiro & Morgana Scaramussa Gonçalves & Daniel Soares Ferreira & Dalila Costa Gonçalves & Samira Luns Hatum Almeida & Ramon Amaro Sales & Felipe Cunha Siman & Luan Peroni Venancio & , 2022. "Water demand of central pivot-irrigated areas in Bahia, Brazil: management of water resources applied to sustainable production," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 12340-12366, October.
    7. Subramaniam, Vijaya & Hashim, Zulkifli & Loh, Soh Kheang & Astimar, Abdul Aziz, 2020. "Assessing water footprint for the oil palm supply chain- a cradle to gate study," Agricultural Water Management, Elsevier, vol. 237(C).
    8. Yang, Xiaoqing & Du, Rongcheng & He, Daiwei & Li, Dayong & Chen, Jingru & Han, Xiaole & Wang, Ziqing & Zhang, Zhi, 2023. "Optimal combination of potassium coupled with water and nitrogen for strawberry quality based on consumer-orientation," Agricultural Water Management, Elsevier, vol. 287(C).
    9. Lévesque, Serge & Graham, Thomas & Bejan, Dorin & Dixon, Mike, 2022. "Comparative analysis of regenerative in situ electrochemical hypochlorination and conventional water disinfection technologies for growing ornamental crops with recirculating hydroponics," Agricultural Water Management, Elsevier, vol. 269(C).
    10. Atzori, Giulia & Nissim, Werther & Macchiavelli, Tania & Vita, Federico & Azzarello, Elisa & Pandolfi, Camilla & Masi, Elisa & Mancuso, Stefano, 2020. "Tetragonia tetragonioides (Pallas) Kuntz. as promising salt-tolerant crop in a saline agricultural context," Agricultural Water Management, Elsevier, vol. 240(C).
    11. Joanna Majkowska-Gadomska & Zdzisław Kaliniewicz & Emilia Mikulewicz & Anna Francke & Krzysztof K. Jadwisieńczak & Marek Marks & Dariusz J. Choszcz & Wojciech Kozłowski, 2024. "Effect of Different Sustainable Cultivation Methods on the Biometric Parameters and Yield of Mint," Sustainability, MDPI, vol. 16(16), pages 1-11, August.
    12. Rocío Poveda-Bautista & Bernat Roig-Merino & Herminia Puerto & Juan Buitrago-Vera, 2021. "Assessment of Irrigation Water Use Efficiency in Citrus Orchards Using AHP," IJERPH, MDPI, vol. 18(11), pages 1-14, May.
    13. Çakir, Recep & Kanburoglu-Çebi, Ulviye & Altintas, Surreya & Ozdemir, Aylin, 2017. "Irrigation scheduling and water use efficiency of cucumber grown as a spring-summer cycle crop in solar greenhouse," Agricultural Water Management, Elsevier, vol. 180(PA), pages 78-87.
    14. Blok, Chris & Voogt, Wim & Barbagli, Tommaso, 2023. "Reducing nutrient imbalance in recirculating drainage solution of stone wool grown tomato," Agricultural Water Management, Elsevier, vol. 285(C).
    15. Lukas Simon Kriem & Carsten Pietzka & Marc Beckett & Luisa Gärtling & Benjamin Wriedt, 2023. "Electrochemical In Situ Hydrogen Peroxide Production Can Reduce Microbial Load in Bioponic Nutrient Solutions Derived from Organic Waste," Agriculture, MDPI, vol. 13(11), pages 1-17, November.
    16. Ernest Baba Ali & Ephraim Bonah Agyekum & Parise Adadi, 2021. "Agriculture for Sustainable Development: A SWOT-AHP Assessment of Ghana’s Planting for Food and Jobs Initiative," Sustainability, MDPI, vol. 13(2), pages 1-24, January.
    17. Mahmood, Farhat & Govindan, Rajesh & Bermak, Amine & Yang, David & Al-Ansari, Tareq, 2023. "Data-driven robust model predictive control for greenhouse temperature control and energy utilisation assessment," Applied Energy, Elsevier, vol. 343(C).
    18. Veisi, Hadi & Deihimfard, Reza & Shahmohammadi, Alireza & Hydarzadeh, Yasoub, 2022. "Application of the analytic hierarchy process (AHP) in a multi-criteria selection of agricultural irrigation systems," Agricultural Water Management, Elsevier, vol. 267(C).
    19. Hong, Tingting & Cai, Zelin & Li, Rui & Liu, Jiecheng & Li, Jinglai & Wang, Zheng & Zhang, Zhi, 2022. "Effects of water and nitrogen coupling on watermelon growth, photosynthesis and yield under CO2 enrichment," Agricultural Water Management, Elsevier, vol. 259(C).
    20. Tarek Mahrous Korany Mohamed & Jianmin Gao & Mohamed E. Abuarab & Mohamed Kassem & Essam Wasef & Wessam El-Ssawy, 2022. "Applying Different Magnetic Water Densities as Irrigation for Aeroponically and Hydroponically Grown Strawberries," Agriculture, MDPI, vol. 12(6), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:258:y:2021:i:c:s0378377421004480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.