IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v255y2021ics0378377421003140.html
   My bibliography  Save this article

A case study on the effects of data temporal resolution on the simulation of water flux extremes using a process-based model at the grassland field scale

Author

Listed:
  • Wu, Lianhai
  • Curceac, Stelian
  • Atkinson, Peter M.
  • Milne, Alice
  • Harris, Paul

Abstract

Projected changes to rainfall patterns may exacerbate existing risks posed by flooding. Furthermore, increased surface runoff from agricultural land increases pollution through nutrient losses. Agricultural systems are complex because they are managed in individual fields, and it is impractical to provide resources to monitor their water fluxes. In this respect, modelling provides an inexpensive tool for simulating fluxes. At the field-scale, a daily time-step is used routinely. However, it was hypothesised that a finer time-step will provide more accurate identification of peak fluxes. To investigate this, the process-based SPACSYS model that simulates water fluxes, soil carbon and nitrogen cycling, as well as plant growth, with a daily time-step was adapted to provide sub-daily simulations. As a case study, the water flux simulations were checked against a 15-minute measured water flux dataset from April 2013 to February 2016 from a pasture within a monitored grassland research farm, where the data were up-scaled to hourly, 6-hourly and daily. Analyses were conducted with respect to model performance for: (a) each of the four data resolutions, separately (15-minute measured versus 15-minute simulated; hourly measured versus hourly simulated; etc.); and (b) at the daily resolution only, where 15-minute, hourly and 6-hourly simulations were each aggregated to the daily scale. Comparison between measured and simulated fluxes at the four resolutions revealed that hourly simulations provided the smallest misclassification rate for identifying water flux peaks. Conversely, aggregating to the daily scale using either 15-minute or hourly simulations increased accuracy, both in prediction of general trends and identification of peak fluxes. For the latter investigation, the improved identification of extremes resulted in 9 out of 11 peak flow events being correctly identified with only 2 false positives, compared with 5 peaks being identified with 4 false positives of the usual daily simulations. Increased peak flow detection accuracy has the potential to provide clear field management benefits in reducing nutrient losses to water.

Suggested Citation

  • Wu, Lianhai & Curceac, Stelian & Atkinson, Peter M. & Milne, Alice & Harris, Paul, 2021. "A case study on the effects of data temporal resolution on the simulation of water flux extremes using a process-based model at the grassland field scale," Agricultural Water Management, Elsevier, vol. 255(C).
  • Handle: RePEc:eee:agiwat:v:255:y:2021:i:c:s0378377421003140
    DOI: 10.1016/j.agwat.2021.107049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421003140
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Conrad Wasko & Ashish Sharma & Dennis P. Lettenmaier, 2019. "Increases in temperature do not translate to increased flooding," Nature Communications, Nature, vol. 10(1), pages 1-3, December.
    2. Wu, L. & McGechan, M.B. & McRoberts, N. & Baddeley, J.A. & Watson, C.A., 2007. "SPACSYS: Integration of a 3D root architecture component to carbon, nitrogen and water cycling—Model description," Ecological Modelling, Elsevier, vol. 200(3), pages 343-359.
    3. Jaehak Jeong & Narayanan Kannan & Jeff Arnold & Roger Glick & Leila Gosselink & Raghavan Srinivasan, 2010. "Development and Integration of Sub-hourly Rainfall–Runoff Modeling Capability Within a Watershed Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4505-4527, December.
    4. Pathak, P. & Sudi, R. & Wani, S.P. & Sahrawat, K.L., 2013. "Hydrological behavior of Alfisols and Vertisols in the semi-arid zone: Implications for soil and water management," Agricultural Water Management, Elsevier, vol. 118(C), pages 12-21.
    5. Adimassu, Zenebe & Alemu, Getachew & Tamene, Lulseged, 2019. "Effects of tillage and crop residue management on runoff, soil loss and crop yield in the Humid Highlands of Ethiopia," Agricultural Systems, Elsevier, vol. 168(C), pages 11-18.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yuehua & Wang, Zhongwu & Wu, Lianhai & Li, Haigang & Li, Jiangwen & Zhu, Aimin & Jin, Yuxi & Han, Guodong, 2024. "Effects of grazing and climate change on aboveground standing biomass and sheep live weight changes in the desert steppe in Inner Mongolia, China," Agricultural Systems, Elsevier, vol. 217(C).
    2. Nana Chen & Xin Zhao & Shuxian Dou & Aixing Deng & Chengyan Zheng & Tiehua Cao & Zhenwei Song & Weijian Zhang, 2023. "The Tradeoff between Maintaining Maize ( Zea mays L.) Productivity and Improving Soil Quality under Conservation Tillage Practice in Semi-Arid Region of Northeast China," Agriculture, MDPI, vol. 13(2), pages 1-17, February.
    3. Yan Shan & Mingbin Huang & Paul Harris & Lianhai Wu, 2021. "A Sensitivity Analysis of the SPACSYS Model," Agriculture, MDPI, vol. 11(7), pages 1-30, July.
    4. Anantha, K.H. & Garg, Kaushal K. & Barron, Jennie & Dixit, Sreenath & Venkataradha, A. & Singh, Ramesh & Whitbread, Anthony M., 2021. "Impact of best management practices on sustainable crop production and climate resilience in smallholder farming systems of South Asia," Agricultural Systems, Elsevier, vol. 194(C).
    5. Kamdi, Prasad Jairam & Swain, Dillip Kumar & Wani, Suhas P., 2023. "Developing climate change agro-adaptation strategies through field experiments and simulation analyses for sustainable sorghum production in semi-arid tropics of India," Agricultural Water Management, Elsevier, vol. 286(C).
    6. Vashisht, B.B. & Jalota, S.K. & Ramteke, P. & Kaur, Ramandeep & Jayeswal, D.K., 2021. "Impact of rice (O. sativa L.) straw incorporation induced changes in soil physical and chemical properties on yield, water and nitrogen–balance and –use efficiency of wheat (T. aestivum L.) in rice–wh," Agricultural Systems, Elsevier, vol. 194(C).
    7. Napoli, Marco & Orlandini, Simone, 2015. "Evaluating the Arc-SWAT2009 in predicting runoff, sediment, and nutrient yields from a vineyard and an olive orchard in Central Italy," Agricultural Water Management, Elsevier, vol. 153(C), pages 51-62.
    8. Zafar Iqbal & Shamsuddin Shahid & Tarmizi Ismail & Zulfaqar Sa’adi & Aitazaz Farooque & Zaher Mundher Yaseen, 2022. "Distributed Hydrological Model Based on Machine Learning Algorithm: Assessment of Climate Change Impact on Floods," Sustainability, MDPI, vol. 14(11), pages 1-30, May.
    9. Somasundaram Jayaraman & Yash P. Dang & Anandkumar Naorem & Kathryn L. Page & Ram C. Dalal, 2021. "Conservation Agriculture as a System to Enhance Ecosystem Services," Agriculture, MDPI, vol. 11(8), pages 1-14, July.
    10. Wu, L. & Harris, P. & Misselbrook, T.H. & Lee, M.R.F., 2022. "Simulating grazing beef and sheep systems," Agricultural Systems, Elsevier, vol. 195(C).
    11. Shan-e-hyder Soomro & Caihong Hu & Muhammad Waseem Boota & Zubair Ahmed & Liu Chengshuai & Han Zhenyue & Li Xiang & Mairaj Hyder Alias Aamir Soomro, 2022. "River Flood Susceptibility and Basin Maturity Analyzed Using a Coupled Approach of Geo-morphometric Parameters and SWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2131-2160, May.
    12. Bown, James L. & Pachepsky, Elizaveta & Eberst, Alistair & Bausenwein, Ursula & Millard, Peter & Squire, Geoff R. & Crawford, John W., 2007. "Consequences of intraspecific variation for the structure and function of ecological communities," Ecological Modelling, Elsevier, vol. 207(2), pages 264-276.
    13. Ricci, Giovanni Francesco & D’Ambrosio, Ersilia & De Girolamo, Anna Maria & Gentile, Francesco, 2022. "Efficiency and feasibility of Best Management Practices to reduce nutrient loads in an agricultural river basin," Agricultural Water Management, Elsevier, vol. 259(C).
    14. Höglind, Mats & Cameron, David & Persson, Tomas & Huang, Xiao & van Oijen, Marcel, 2020. "BASGRA_N: A model for grassland productivity, quality and greenhouse gas balance," Ecological Modelling, Elsevier, vol. 417(C).
    15. Omid Rahmati & Zahra Kalantari & Mahmood Samadi & Evelyn Uuemaa & Davoud Davoudi Moghaddam & Omid Asadi Nalivan & Georgia Destouni & Dieu Tien Bui, 2019. "GIS-Based Site Selection for Check Dams in Watersheds: Considering Geomorphometric and Topo-Hydrological Factors," Sustainability, MDPI, vol. 11(20), pages 1-20, October.
    16. Fekremariam Asargew Mihretie & Atsushi Tsunekawa & Nigussie Haregeweyn & Enyew Adgo & Mitsuru Tsubo & Tsugiyuki Masunaga & Derege Tsegaye Meshesha & Kindiye Ebabu & Muluken Bayable, 2021. "Agro-Economic Evaluation of Alternative Crop Management Options for Teff Production in Midland Agro-Ecology, Ethiopia," Agriculture, MDPI, vol. 11(4), pages 1-20, March.
    17. Hyungseok Park & Sewoong Chung & Eunju Cho & Kyoungjae Lim, 2018. "Impact of climate change on the persistent turbidity issue of a large dam reservoir in the temperate monsoon region," Climatic Change, Springer, vol. 151(3), pages 365-378, December.
    18. Kipling, Richard P. & Bannink, André & Bellocchi, Gianni & Dalgaard, Tommy & Fox, Naomi J. & Hutchings, Nicholas J. & Kjeldsen, Chris & Lacetera, Nicola & Sinabell, Franz & Topp, Cairistiona F.E. & va, 2016. "Modeling European ruminant production systems: Facing the challenges of climate change," Agricultural Systems, Elsevier, vol. 147(C), pages 24-37.
    19. Ricci, G.F. & Jeong, J. & De Girolamo, A.M. & Gentile, F., 2020. "Effectiveness and feasibility of different management practices to reduce soil erosion in an agricultural watershed," Land Use Policy, Elsevier, vol. 90(C).
    20. Gaiser, Thomas & Perkons, Ute & Küpper, Paul Martin & Kautz, Timo & Uteau-Puschmann, Daniel & Ewert, Frank & Enders, Andreas & Krauss, Gunther, 2013. "Modeling biopore effects on root growth and biomass production on soils with pronounced sub-soil clay accumulation," Ecological Modelling, Elsevier, vol. 256(C), pages 6-15.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:255:y:2021:i:c:s0378377421003140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.