IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v253y2021ics0378377421001773.html
   My bibliography  Save this article

Reference evapotranspiration change in Heilongjiang Province, China from 1951 to 2018: The role of climate change and rice area expansion

Author

Listed:
  • Hu, Xuhua
  • Chen, Mengting
  • Liu, Dong
  • Li, Dan
  • Jin, Li
  • Liu, Shaohui
  • Cui, Yuanlai
  • Dong, Bin
  • Khan, Shahbaz
  • Luo, Yufeng

Abstract

It is of great significance to study the variation in reference evapotranspiration (ETo) and the factors that influence it to ensure the sustainable and efficient utilization of water resources. In this study, the spatio-temporal changes in ETo and rice areas as well as the relationship between them in Heilongjiang Province, China, from 1951 to 2018 were analysed by using trend, correlation and contribution analyses. The results showed that rice area expansion is an important factor affecting ETo changes. ETo in Heilongjiang Province decreased during the study period. The areas with high ETo in the Songnen and Sanjiang Plain showed a gradually shrinking trend. Climate change and rice area expansion both contributed to the decline in ETo. The decreases in sunshine duration and average wind speed in Heilongjiang Province were the main reasons for the decrease in ETo. Rice area in Heilongjiang province continued to increase at a rate of 0.54 × 105 ha yr−1. The expansion of rice area in Sanjiang Plain was the largest, followed by Songnen Plain. In response to the rice area expansion, the rise in average temperature slowed down, the average relative humidity was increased, while wind speed was reduced, which directly lead to the decrease in ETo. The effects of the transformation of different land types into rice fields on ETo were different. The cumulative effects of wetlands and dry fields conversion to rice fields on ETo were 7.67 mm yr−1 and − 20.15 mm yr−1 in Sanjiang Plain respectively.

Suggested Citation

  • Hu, Xuhua & Chen, Mengting & Liu, Dong & Li, Dan & Jin, Li & Liu, Shaohui & Cui, Yuanlai & Dong, Bin & Khan, Shahbaz & Luo, Yufeng, 2021. "Reference evapotranspiration change in Heilongjiang Province, China from 1951 to 2018: The role of climate change and rice area expansion," Agricultural Water Management, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:agiwat:v:253:y:2021:i:c:s0378377421001773
    DOI: 10.1016/j.agwat.2021.106912
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421001773
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.106912?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nam, Won-Ho & Hong, Eun-Mi & Choi, Jin-Yong, 2015. "Has climate change already affected the spatial distribution and temporal trends of reference evapotranspiration in South Korea?," Agricultural Water Management, Elsevier, vol. 150(C), pages 129-138.
    2. Lv, Yuping & Xu, Junzeng & Yang, Shihong & Liu, Xiaoyin & Zhang, Jiangang & Wang, Yijiang, 2018. "Inter-seasonal and cross-treatment variability in single-crop coefficients for rice evapotranspiration estimation and their validation under drying-wetting cycle conditions," Agricultural Water Management, Elsevier, vol. 196(C), pages 154-161.
    3. CholHyok Kang & Yili Zhang & Zhaofeng Wang & Linshan Liu & Huamin Zhang & Yilgwang Jo, 2017. "The Driving Force Analysis of NDVI Dynamics in the Trans-Boundary Tumen River Basin between 2000 and 2015," Sustainability, MDPI, vol. 9(12), pages 1-19, December.
    4. Qiu, Rangjian & Liu, Chunwei & Cui, Ningbo & Wu, Youjie & Wang, Zhenchang & Li, Gen, 2019. "Evapotranspiration estimation using a modified Priestley-Taylor model in a rice-wheat rotation system," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    5. Zhao, Ziyang & Wang, Hongrui & Wang, Cheng & Li, Wangcheng & Chen, Hao & Deng, Caiyun, 2020. "Changes in reference evapotranspiration over Northwest China from 1957 to 2018: Variation characteristics, cause analysis and relationships with atmospheric circulation," Agricultural Water Management, Elsevier, vol. 231(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Peng & Xie, Hua & Yang, Yiting & Hu, Xuhua & Liu, Chaoli & Xu, Yang & Song, Changhong & Dai, Chunsheng & Khan, Shahbaz & Cui, Yuanlai & Luo, Yufeng, 2024. "Spatiotemporal variation in rice water requirements and area in the cold rice cultivation region of China: Past and Future," Agricultural Water Management, Elsevier, vol. 298(C).
    2. Geng, Qingling & Zhao, Yongkun & Sun, Shikun & He, Xiaohui & Wang, Dong & Wu, Dingrong & Tian, Zhihui, 2023. "Spatio-temporal changes and its driving forces of irrigation water requirements for cotton in Xinjiang, China," Agricultural Water Management, Elsevier, vol. 280(C).
    3. Su, Qiong & Singh, Vijay P. & Karthikeyan, Raghupathy, 2022. "Improved reference evapotranspiration methods for regional irrigation water demand estimation," Agricultural Water Management, Elsevier, vol. 274(C).
    4. Tangzhe Nie & Rong Yuan & Sihan Liao & Zhongxue Zhang & Zhenping Gong & Xi Zhao & Peng Chen & Tiecheng Li & Yanyu Lin & Chong Du & Changlei Dai & Hao Jiang, 2022. "Characteristics of Potential Evapotranspiration Changes and Its Climatic Causes in Heilongjiang Province from 1960 to 2019," Agriculture, MDPI, vol. 12(12), pages 1-20, November.
    5. Qian-Qian Wang & Cheng-Xin Geng & Lu Wang & Ting-Ting Zheng & Qing-Hong Jiang & Tong Yang & Yong-Qi Liu & Zhe Wang, 2023. "Water Conservation and Ecological Water Requirement Prediction of Mining Area in Arid Region Based on RS-GIS and InVEST: A Case Study of Bayan Obo Mine in Baotou, China," Sustainability, MDPI, vol. 15(5), pages 1-17, February.
    6. Zihan Liu & Dong Jing & Yu Han & Jingxin Yu & Tiangang Lu & Lili Zhangzhong, 2022. "Spatiotemporal Distribution Characteristics and Influencing Factors Analysis of Reference Evapotranspiration in Beijing–Tianjin–Hebei Region from 1990 to 2019 under Climate Change," Sustainability, MDPI, vol. 14(10), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Rangjian & Li, Longan & Liu, Chunwei & Wang, Zhenchang & Zhang, Baozhong & Liu, Zhandong, 2022. "Evapotranspiration estimation using a modified crop coefficient model in a rotated rice-winter wheat system," Agricultural Water Management, Elsevier, vol. 264(C).
    2. Zihan Liu & Dong Jing & Yu Han & Jingxin Yu & Tiangang Lu & Lili Zhangzhong, 2022. "Spatiotemporal Distribution Characteristics and Influencing Factors Analysis of Reference Evapotranspiration in Beijing–Tianjin–Hebei Region from 1990 to 2019 under Climate Change," Sustainability, MDPI, vol. 14(10), pages 1-22, May.
    3. Wei, Jun & Cui, Yuanlai & Luo, Yufeng, 2023. "Rice growth period detection and paddy field evapotranspiration estimation based on an improved SEBAL model: Considering the applicable conditions of the advection equation," Agricultural Water Management, Elsevier, vol. 278(C).
    4. Cao, Jingjing & Tan, Junwei & Cui, Yuanlai & Luo, Yufeng, 2019. "Irrigation scheduling of paddy rice using short-term weather forecast data," Agricultural Water Management, Elsevier, vol. 213(C), pages 714-723.
    5. Lu, Yingjie & Li, Tao & Hu, Hui & Zeng, Xuemei, 2023. "Short-term prediction of reference crop evapotranspiration based on machine learning with different decomposition methods in arid areas of China," Agricultural Water Management, Elsevier, vol. 279(C).
    6. Lee, Yonggwan & Jung, Chunggil & Kim, Seongjoon, 2019. "Spatial distribution of soil moisture estimates using a multiple linear regression model and Korean geostationary satellite (COMS) data," Agricultural Water Management, Elsevier, vol. 213(C), pages 580-593.
    7. Hou, Chenli & Tian, Delong & Xu, Bing & Ren, Jie & Hao, Lei & Chen, Ning & Li, Xianyue, 2021. "Use of the stable oxygen isotope method to evaluate the difference in water consumption and utilization strategy between alfalfa and maize fields in an arid shallow groundwater area," Agricultural Water Management, Elsevier, vol. 256(C).
    8. Gong, Xuewen & Qiu, Rangjian & Ge, Jiankun & Bo, Guokui & Ping, Yinglu & Xin, Qingsong & Wang, Shunsheng, 2021. "Evapotranspiration partitioning of greenhouse grown tomato using a modified Priestley–Taylor model," Agricultural Water Management, Elsevier, vol. 247(C).
    9. Qun Liu & Zhaoping Yang & Cuirong Wang & Fang Han, 2019. "Temporal-Spatial Variations and Influencing Factor of Land Use Change in Xinjiang, Central Asia, from 1995 to 2015," Sustainability, MDPI, vol. 11(3), pages 1-14, January.
    10. Qiu, Rangjian & Luo, Yufeng & Wu, Jingwei & Zhang, Baozhong & Liu, Zhihe & Agathokleous, Evgenios & Yang, Xiumei & Hu, Wei & Clothier, Brent, 2023. "Short–term forecasting of daily evapotranspiration from rice using a modified Priestley–Taylor model and public weather forecasts," Agricultural Water Management, Elsevier, vol. 277(C).
    11. Elbeltagi, Ahmed & Srivastava, Aman & Deng, Jinsong & Li, Zhibin & Raza, Ali & Khadke, Leena & Yu, Zhoulu & El-Rawy, Mustafa, 2023. "Forecasting vapor pressure deficit for agricultural water management using machine learning in semi-arid environments," Agricultural Water Management, Elsevier, vol. 283(C).
    12. Mingze Yao & Manman Gao & Jingkuan Wang & Bo Li & Lizhen Mao & Mingyu Zhao & Zhanyang Xu & Hongfei Niu & Tieliang Wang & Lei Sun & Dongshuang Niu, 2023. "Estimating Evapotranspiration of Greenhouse Tomato under Different Irrigation Levels Using a Modified Dual Crop Coefficient Model in Northeast China," Agriculture, MDPI, vol. 13(9), pages 1-19, September.
    13. Zhao, Ziyang & Wang, Hongrui & Qin, Daoqing & Wang, Cheng, 2021. "Large-scale monitoring of soil moisture using Temperature Vegetation Quantitative Index (TVQI) and exponential filtering: A case study in Beijing," Agricultural Water Management, Elsevier, vol. 252(C).
    14. He, Ruyan & Jin, Yufang & Jiang, Jinbao & Xu, Meng & Jia, Sen, 2022. "Sensitivity of METRIC-based tree crop evapotranspiration estimation to meteorology, land surface parameters and domain size," Agricultural Water Management, Elsevier, vol. 271(C).
    15. Wang, Ning & Zhang, Tonghui & Cong, Anqi & Lian, Jie, 2023. "Integrated application of fertilization and reduced irrigation improved maize (Zea mays L.) yield, crop water productivity and nitrogen use efficiency in a semi-arid region," Agricultural Water Management, Elsevier, vol. 289(C).
    16. Nam, Won-Ho & Hayes, Michael J. & Svoboda, Mark D. & Tadesse, Tsegaye & Wilhite, Donald A., 2015. "Drought hazard assessment in the context of climate change for South Korea," Agricultural Water Management, Elsevier, vol. 160(C), pages 106-117.
    17. Hong, Eun-Mi & Nam, Won-Ho & Choi, Jin-Yong & Pachepsky, Yakov A., 2016. "Projected irrigation requirements for upland crops using soil moisture model under climate change in South Korea," Agricultural Water Management, Elsevier, vol. 165(C), pages 163-180.
    18. Chen, Ning & Li, Xianyue & Shi, Haibin & Hu, Qi & Zhang, Yuehong & Hou, Chenli & Liu, Yahui, 2022. "Modeling evapotranspiration and evaporation in corn/tomato intercropping ecosystem using a modified ERIN model considering plastic film mulching," Agricultural Water Management, Elsevier, vol. 260(C).
    19. Baik, Jongjin & Choi, Minha, 2015. "Evaluation of geostationary satellite (COMS) based Priestley–Taylor evapotranspiration," Agricultural Water Management, Elsevier, vol. 159(C), pages 77-91.
    20. Pengrui Ai & Yingjie Ma & Ying Hai, 2023. "Comparing Simulated Jujube Evapotranspiration from P–T, Dual Kc, and S–W Models against Measurements Using a Large Weighing Lysimeter under Drip Irrigation in an Arid Area," Agriculture, MDPI, vol. 13(2), pages 1-23, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:253:y:2021:i:c:s0378377421001773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.