IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v252y2021ics0378377421001396.html
   My bibliography  Save this article

Field calibrations of a Diviner 2000 capacitive soil water content probe on a shallow groundwater site and the application in a weighable groundwater lysimeter

Author

Listed:
  • Dietrich, Ottfried
  • Steidl, Jörg

Abstract

The determination of the volumetric soil water content θv by means of capacitive profile probes is often applied to investigate the soil water storage change ΔS that serves as basis for decisions in agricultural water management. The soil properties have a big effect on the accuracy of the θv measurements. The use of only one calibration function, often provided by the manufacturers of the probes, cannot fulfil the requirements of all site conditions. Therefore, many individual calibration functions have in the past been determined for different soils and sensors. A literature review of existing calibration functions of the capacitive profile probe Diviner 2000 shows the broad range of available functions. The review makes it clear that there is a lack of functions for organic soils. These soils are typical soils of wet sites with shallow groundwater tables. The soil moisture is of big importance for many ecological processes of these sites and therefore an exact determination of θv is important. A Diviner 2000 profile probe was calibrated on such a shallow groundwater site in a classic field calibration procedure and the determined functions were applied to the soil profile of a weighable groundwater lysimeter. The soil water storage change ΔS was estimated with the measured θv values and compared with the measured mass change Δm of the lysimeter. The mean error (bias) between ΔS with the field calibration function and Δm was 7.8 kg and the root mean squared error (RMSE) 19.9 kg. An iterative adaptation of the calibration functions to the measured Δm values of the lysimeter reduced the bias to 0.9 kg and the RMSE to 14.0 kg. The investigations illustrate the problems of a classic field calibration under the conditions of a shallow groundwater site with low θv changes in deeper soil horizons and soils with high Corg contents as well as the inaccuracy in the determination of ΔS based on θv measurements with capacitive profile probes.

Suggested Citation

  • Dietrich, Ottfried & Steidl, Jörg, 2021. "Field calibrations of a Diviner 2000 capacitive soil water content probe on a shallow groundwater site and the application in a weighable groundwater lysimeter," Agricultural Water Management, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:agiwat:v:252:y:2021:i:c:s0378377421001396
    DOI: 10.1016/j.agwat.2021.106874
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421001396
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.106874?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dietrich, Ottfried & Fahle, Marcus & Seyfarth, Manfred, 2016. "Behavior of water balance components at sites with shallow groundwater tables: Possibilities and limitations of their simulation using different ways to control weighable groundwater lysimeters," Agricultural Water Management, Elsevier, vol. 163(C), pages 75-89.
    2. Evett, Steven R. & Schwartz, Robert C. & Casanova, Joaquin J. & Heng, Lee K., 2012. "Soil water sensing for water balance, ET and WUE," Agricultural Water Management, Elsevier, vol. 104(C), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    2. Tang, F. & Lahoori, M. & Nowamooz, H. & Rosin-Paumier, S. & Masrouri, F., 2021. "A numerical study into effects of soil compaction and heat storage on thermal performance of a Horizontal Ground Heat Exchanger," Renewable Energy, Elsevier, vol. 172(C), pages 740-752.
    3. Tarkalson, David D. & King, Bradley A. & Bjorneberg, Dave L., 2022. "Maize grain yield and crop water productivity functions in the arid Northwest U.S," Agricultural Water Management, Elsevier, vol. 264(C).
    4. Nakabuye, Hope Njuki & Rudnick, Daran & DeJonge, Kendall C. & Lo, Tsz Him & Heeren, Derek & Qiao, Xin & Franz, Trenton E. & Katimbo, Abia & Duan, Jiaming, 2022. "Real-time irrigation scheduling of maize using Degrees Above Non-Stressed (DANS) index in semi-arid environment," Agricultural Water Management, Elsevier, vol. 274(C).
    5. Pizarro, E. & Galleguillos, M. & Barría, P. & Callejas, R., 2022. "Irrigation management or climate change ? Which is more important to cope with water shortage in the production of table grape in a Mediterranean context," Agricultural Water Management, Elsevier, vol. 263(C).
    6. Reinhard NOLZ & Willibald LOISKANDL & Gerhard KAMMERER & Margarita L. HIMMELBAUER, 2016. "Survey of soil water distribution in a vineyard and implications for subsurface drip irrigation control," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 11(4), pages 250-258.
    7. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    8. Liu, Yutong & Lu, Yili & Sadeghi, Morteza & Horton, Robert & Ren, Tusheng, 2024. "Measurement and estimation of evapotranspiration in a maize field: A new method based on an analytical water flux model," Agricultural Water Management, Elsevier, vol. 295(C).
    9. Sun, Libo & Chang, Xiaomin & Yu, Xinxiao & Jia, Guodong & Chen, Lihua & Wang, Yusong & Liu, Ziqiang, 2021. "Effect of freeze-thaw processes on soil water transport of farmland in a semi-arid area," Agricultural Water Management, Elsevier, vol. 252(C).
    10. Valeh Khaledi & Bahareh Kamali & Gunnar Lischeid & Ottfried Dietrich & Mariel F. Davies & Claas Nendel, 2024. "Challenges of Including Wet Grasslands with Variable Groundwater Tables in Large-Area Crop Production Simulations," Agriculture, MDPI, vol. 14(5), pages 1-17, April.
    11. Datta, Sumon & Taghvaeian, Saleh, 2023. "Soil water sensors for irrigation scheduling in the United States: A systematic review of literature," Agricultural Water Management, Elsevier, vol. 278(C).
    12. Alcaras, L. Martín Agüero & Rousseaux, M. Cecilia & Searles, Peter S., 2016. "Responses of several soil and plant indicators to post-harvest regulated deficit irrigation in olive trees and their potential for irrigation scheduling," Agricultural Water Management, Elsevier, vol. 171(C), pages 10-20.
    13. Tang, Fujiao & Nowamooz, Hossein, 2020. "Outlet temperatures of a slinky-type Horizontal Ground Heat Exchanger with the atmosphere-soil interaction," Renewable Energy, Elsevier, vol. 146(C), pages 705-718.
    14. Hunsaker, D.J. & French, A.N. & Waller, P.M. & Bautista, E. & Thorp, K.R. & Bronson, K.F. & Andrade-Sanchez, P., 2015. "Comparison of traditional and ET-based irrigation scheduling of surface-irrigated cotton in the arid southwestern USA," Agricultural Water Management, Elsevier, vol. 159(C), pages 209-224.
    15. Sharma, Kiran & Irmak, Suat & Kukal, Meetpal S., 2021. "Propagation of soil moisture sensing uncertainty into estimation of total soil water, evapotranspiration and irrigation decision-making," Agricultural Water Management, Elsevier, vol. 243(C).
    16. Vinod Phogat & Tim Pitt & Paul Petrie & Jirka Šimůnek & Michael Cutting, 2023. "Optimization of Irrigation of Wine Grapes with Brackish Water for Managing Soil Salinization," Land, MDPI, vol. 12(10), pages 1-29, October.
    17. Phogat, V. & Pitt, T. & Cox, J.W. & Šimůnek, J. & Skewes, M.A., 2018. "Soil water and salinity dynamics under sprinkler irrigated almond exposed to a varied salinity stress at different growth stages," Agricultural Water Management, Elsevier, vol. 201(C), pages 70-82.
    18. Li, Jiang & Wang, Xinxin & Bai, Liangliang & Mao, Xiaomin, 2017. "Quantification of lateral seepage from farmland during maize growing season in arid region," Agricultural Water Management, Elsevier, vol. 191(C), pages 85-97.
    19. Esmaili, Maryam & Aliniaeifard, Sasan & Mashal, Mahmoud & Vakilian, Keyvan Asefpour & Ghorbanzadeh, Parisa & Azadegan, Behzad & Seif, Mehdi & Didaran, Fardad, 2021. "Assessment of adaptive neuro-fuzzy inference system (ANFIS) to predict production and water productivity of lettuce in response to different light intensities and CO2 concentrations," Agricultural Water Management, Elsevier, vol. 258(C).
    20. Vinod Phogat & Jirka Šimůnek & Paul Petrie & Tim Pitt & Vilim Filipović, 2023. "Sustainability of a Rainfed Wheat Production System in Relation to Water and Nitrogen Dynamics in the Soil in the Eyre Peninsula, South Australia," Sustainability, MDPI, vol. 15(18), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:252:y:2021:i:c:s0378377421001396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.