IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v249y2021ics0378377421000706.html
   My bibliography  Save this article

Effects of different irrigation levels on plant water status, yield, fruit quality, and water productivity in a drip-irrigated blueberry orchard under Mediterranean conditions

Author

Listed:
  • Ortega-Farias, Samuel
  • Espinoza-Meza, Sergio
  • López-Olivari, Rafael
  • Araya-Alman, Miguel
  • Carrasco-Benavides, Marcos

Abstract

As blueberries are susceptible to water stress and their future cultivation in semiarid Mediterranean areas will be challenged by drought, irrigation management strategies will be needed to optimize water productivity and maintain sufficient levels of fruit yield and quality. This study aim was to evaluate the effect of different irrigation levels on plant water status, yield, fruit quality, and water productivity in a drip-irrigated rabbiteye blueberry (Vaccinium ashei Reade 'Tifblue') orchard. Four irrigation treatments based on crop evapotranspiration (ETc) were applied to blueberry plants during two consecutive growing seasons (2012/2013 and 2013/2014): 125 (farmers’ irrigation management, T1), 100 (T2), 75 (T3), and 50 (T4) % ETc. During the study, the average values of midday stem water potential (Ψstem) were −0.85, −0.86, −0.97 and −1.11 MPa for the T1, T2, T3, and T4 treatments, respectively. Fruit weight (FW), yield (Y), fruits per plant (FP), soluble solids (SS), and the water stress integral (WSI) were significantly affected by the irrigation treatments. The water productivity (WP), juice pH, and weight/volume ratio were statistically similar among the treatments. The highest values of Y, FP, and FW were observed in the T1 and T2 treatments, while the lowest values were found in the T4 treatment. In addition, the Y, FP, FW and WSI in the T1 and T2 treatments were significantly similar, but the total water application in the T2 treatment was between 20% and 27% lower than that in the T1 treatment. For the T1 and T2 treatments, the values of Y were between 8.8 and 9.4 kg plant −1, and the Ψstem was >−0.85 MPa during the two growing seasons. The interaction between irrigation treatments and growing season was only significant for the FW, with the lowest values observed in the T4 treatment during the 2012/2013 growing season.

Suggested Citation

  • Ortega-Farias, Samuel & Espinoza-Meza, Sergio & López-Olivari, Rafael & Araya-Alman, Miguel & Carrasco-Benavides, Marcos, 2021. "Effects of different irrigation levels on plant water status, yield, fruit quality, and water productivity in a drip-irrigated blueberry orchard under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 249(C).
  • Handle: RePEc:eee:agiwat:v:249:y:2021:i:c:s0378377421000706
    DOI: 10.1016/j.agwat.2021.106805
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421000706
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.106805?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Holzapfel, E. A. & Hepp, R. F. & Marino, M. A., 2004. "Effect of irrigation on fruit production in blueberry," Agricultural Water Management, Elsevier, vol. 67(3), pages 173-184, July.
    2. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    3. Acevedo-Opazo, C. & Ortega-Farias, S. & Fuentes, S., 2010. "Effects of grapevine (Vitis vinifera L.) water status on water consumption, vegetative growth and grape quality: An irrigation scheduling application to achieve regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 97(7), pages 956-964, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yonela Mndela & Naledzani Ndou & Adolph Nyamugama, 2023. "Irrigation Scheduling for Small-Scale Crops Based on Crop Water Content Patterns Derived from UAV Multispectral Imagery," Sustainability, MDPI, vol. 15(15), pages 1-21, August.
    2. Gavilan, Pedro & Higueras, José L. & Lozano, David & Ruiz, Natividad, 2024. "The Riego Berry mobile application: A powerful tool to improve on-farm irrigation performance in berry crops," Agricultural Water Management, Elsevier, vol. 292(C).
    3. Ortega-Farias, Samuel & Meza, Sergio Espinoza & López-Olivari, Rafael & Araya-Alman, Miguel & Carrasco-Benavides, Marcos, 2022. "Effects of four irrigation regimes on yield, fruit quality, plant water status, and water productivity in a furrow-irrigated red raspberry orchard," Agricultural Water Management, Elsevier, vol. 273(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    2. Bopp, Carlos & Jara-Rojas, Roberto & Bravo-Ureta, Boris & Engler, Alejandra, 2022. "Irrigation water use, shadow values and productivity: Evidence from stochastic production frontiers in vineyards," Agricultural Water Management, Elsevier, vol. 271(C).
    3. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    4. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    5. Alejandra Engler & Roberto Jara-Rojas & Carlos Bopp, 2016. "Efficient use of Water Resources in Vineyards: A Recursive joint Estimation for the Adoption of Irrigation Technology and Scheduling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5369-5383, November.
    6. Vizinho, André & Avelar, David & Fonseca, Ana Lúcia & Carvalho, Silvia & Sucena-Paiva, Leonor & Pinho, Pedro & Nunes, Alice & Branquinho, Cristina & Vasconcelos, Ana Cátia & Santos, Filipe Duarte & Ro, 2021. "Framing the application of Adaptation Pathways for agroforestry in Mediterranean drylands," Land Use Policy, Elsevier, vol. 104(C).
    7. Zarrouk, Olfa & Francisco, Rita & Pinto-Marijuan, Marta & Brossa, Ricard & Santos, Raquen Raissa & Pinheiro, Carla & Costa, Joaquim Miguel & Lopes, Carlos & Chaves, Maria Manuela, 2012. "Impact of irrigation regime on berry development and flavonoids composition in Aragonez (Syn. Tempranillo) grapevine," Agricultural Water Management, Elsevier, vol. 114(C), pages 18-29.
    8. Ma, Xiaochi & Han, Feng & Wu, Jinggui & Ma, Yan & Jacoby, Pete W., 2023. "Optimizing crop water productivity and altering root distribution of Chardonnay grapevine (Vitis vinifera L.) in a silt loam soil through direct root-zone deficit irrigation," Agricultural Water Management, Elsevier, vol. 277(C).
    9. Sebastian, Bárbara & Lissarrague, José R. & Santesteban, Luis G. & Linares, Rubén & Junquera, Pedro & Baeza, Pilar, 2016. "Effect of irrigation frequency and water distribution pattern on leaf gas exchange of cv. ‘Syrah’ grown on a clay soil at two levels of water availability," Agricultural Water Management, Elsevier, vol. 177(C), pages 410-418.
    10. Petruzzellis, Francesco & Natale, Sara & Bariviera, Luca & Calderan, Alberto & Mihelčič, Alenka & Reščič, Jan & Sivilotti, Paolo & Šuklje, Katja & Lisjak, Klemen & Vanzo, Andreja & Nardini, Andrea, 2022. "High spatial heterogeneity of water stress levels in Refošk grapevines cultivated in Classical Karst," Agricultural Water Management, Elsevier, vol. 260(C).
    11. Gavilan, Pedro & Higueras, José L. & Lozano, David & Ruiz, Natividad, 2024. "The Riego Berry mobile application: A powerful tool to improve on-farm irrigation performance in berry crops," Agricultural Water Management, Elsevier, vol. 292(C).
    12. Chen, Rui & Chang, Hongda & Wang, Zhenhua & Lin, Haixia, 2023. "Determining organic-inorganic fertilizer application threshold to maximize the yield and quality of drip-irrigated grapes in an extremely arid area of Xinjiang, China," Agricultural Water Management, Elsevier, vol. 276(C).
    13. Ma, Xiaochi & Sanguinet, Karen A. & Jacoby, Pete W., 2020. "Direct root-zone irrigation outperforms surface drip irrigation for grape yield and crop water use efficiency while restricting root growth," Agricultural Water Management, Elsevier, vol. 231(C).
    14. Li, Xinxin & Liu, Hongguang & Li, Jing & He, Xinlin & Gong, Ping & Lin, En & Li, Kaiming & Li, Ling & Binley, Andrew, 2020. "Experimental study and multi–objective optimization for drip irrigation of grapes in arid areas of northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    15. Pinillos, Virginia & Chiamolera, Fernando M. & Ortiz, Juan F. & Hueso, Juan J. & Cuevas, Julián, 2016. "Post-veraison regulated deficit irrigation in ‘Crimson Seedless’ table grape saves water and improves berry skin color," Agricultural Water Management, Elsevier, vol. 165(C), pages 181-189.
    16. André Vizinho & David Avelar & Cristina Branquinho & Tiago Capela Lourenço & Silvia Carvalho & Alice Nunes & Leonor Sucena-Paiva & Hugo Oliveira & Ana Lúcia Fonseca & Filipe Duarte Santos & Maria José, 2021. "Framework for Climate Change Adaptation of Agriculture and Forestry in Mediterranean Climate Regions," Land, MDPI, vol. 10(2), pages 1-33, February.
    17. Bonfante, A. & Alfieri, S.M. & Albrizio, R. & Basile, A. & De Mascellis, R. & Gambuti, A. & Giorio, P. & Langella, G. & Manna, P. & Monaco, E. & Moio, L. & Terribile, F., 2017. "Evaluation of the effects of future climate change on grape quality through a physically based model application: a case study for the Aglianico grapevine in Campania region, Italy," Agricultural Systems, Elsevier, vol. 152(C), pages 100-109.
    18. Vincent Pelletier & Jacques Gallichand & Silvio Gumiere & Steeve Pepin & Jean Caron, 2015. "Water Table Control for Increasing Yield and Saving Water in Cranberry Production," Sustainability, MDPI, vol. 7(8), pages 1-18, August.
    19. Holzapfel, E. & Jara, J. & Coronata, A.M., 2015. "Number of drip laterals and irrigation frequency on yield and exportable fruit size of highbush blueberry grown in a sandy soil," Agricultural Water Management, Elsevier, vol. 148(C), pages 207-212.
    20. Hanan Ali Alrteimei & Zulfa Hanan Ash’aari & Farrah Melissa Muharram, 2022. "Last Decade Assessment of the Impacts of Regional Climate Change on Crop Yield Variations in the Mediterranean Region," Agriculture, MDPI, vol. 12(11), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:249:y:2021:i:c:s0378377421000706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.