IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v247y2021ics0378377421000068.html
   My bibliography  Save this article

Comparative study on annual yield, water consumption, irrigation water use efficiency and economic benefits of different rice-oilseed rape rotation systems in Central China

Author

Listed:
  • He, Aibin
  • Yuan, Bo
  • Jin, Zhaoqiang
  • Man, Jianguo
  • Peng, Shaobing
  • Zhang, Li
  • Liu, Hongyan
  • Nie, Lixiao

Abstract

Direct seeded planting pattern is considered as a practicable substitute to transplanting planting pattern because it has the advantages of saving labor, low input cost, high water use efficiency, and easy to manage. However, the comparison between different direct seeded rice-oilseed rape rotation systems and traditional transplanting rice-transplanting oilseed rape rotation system (TTR-TPO) has rarely been studied. In this study, the annual yield, water consumption, water use efficiency and economic benefits of different rice-oilseed rotation systems were compared during the rice and oilseed rape growing seasons from 2018 to 2020. Our results show that the average annual yield and water consumption of wet direct seeded rice-direct seeded oilseed rape rotation system (WDSR-DSO) and wet direct seeded rice-transplanting oilseed rape rotation system (WDSR-TPO) were significant higher than that of TTR-TPO and TTR-DSO. Annual yield of dry direct seeded rice-direct seeded oilseed rape rotation system (DDSR-DSO) and TTR-TPO was similar, but the water consumption of DDSR-DSO was reduced by 22.6% on an average than that of TTR-TPO. Irrigation water use efficiency (WUEi) and net economic return of DDSR-DSO were the highest, which were 72.3% and 15.2% higher than TTR-TPO, respectively. On the contrary, WUEi and net economic return was similar between WDSR-DSO, WDSR-TPO and TTR-TPO, traditional transplanting rice-direct seeded oilseed rape rotation system (TTR-DSO). Here, we show that DDSR-DSO is an alternative to TTR-TPO in central China due to higher WUEi and net economic return, less water consumption and similar annual yield. In addition, WDSR-DSO and WDSR-TPO may be suitable for regions where water levels are high for soil puddling during land preparation and rainfall is sufficient in the rice growth season.

Suggested Citation

  • He, Aibin & Yuan, Bo & Jin, Zhaoqiang & Man, Jianguo & Peng, Shaobing & Zhang, Li & Liu, Hongyan & Nie, Lixiao, 2021. "Comparative study on annual yield, water consumption, irrigation water use efficiency and economic benefits of different rice-oilseed rape rotation systems in Central China," Agricultural Water Management, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:agiwat:v:247:y:2021:i:c:s0378377421000068
    DOI: 10.1016/j.agwat.2021.106741
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421000068
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.106741?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    2. R. Wassmann & H.U. Neue & J.K. Ladha & M.S. Aulakh, 2004. "Mitigating Greenhouse Gas Emissions from Rice-Wheat Cropping Systems in Asia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 6(1), pages 65-90, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Wenhuan & Wang, Hailong, 2021. "Drought and intensified agriculture enhanced vegetation growth in the central Pearl River Basin of China," Agricultural Water Management, Elsevier, vol. 256(C).
    2. Jin, Zhaoqiang & Yue, Rui & Ma, Zhenfa & Cheng, Shangheng & Khan, Mohammad Nauman & Nie, Lixiao, 2024. "Effect of water and nitrogen coupling on energy balance and production efficiency in rice production," Energy, Elsevier, vol. 288(C).
    3. Chaosu Li & Ming Li & Tao Xiong & Hongkun Yang & Xiaoqin Peng & Yong Wang & Haiyan Qin & Haojie Li & Yonglu Tang & Gaoqiong Fan, 2024. "Strip Tillage Improves Productivity of Direct-Seeded Oilseed Rape ( Brassica napus ) in Rice–Oilseed Rape Rotation Systems," Agriculture, MDPI, vol. 14(8), pages 1-11, August.
    4. Qin Liao & Jiangxia Nie & Huilai Yin & Yongheng Luo & Chuanhai Shu & Qingyue Cheng & Hao Fu & Biao Li & Liangyu Li & Yongjian Sun & Zongkui Chen & Jun Ma & Na Li & Xiaoli Zhang & Zhiyuan Yang, 2024. "Can the Integration of Water and Fertilizer Promote the Sustainable Development of Rice Production in China?," Agriculture, MDPI, vol. 14(4), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arbizu-Milagro, Julia & Castillo-Ruiz, Francisco J. & Tascón, Alberto & Peña, Jose M., 2023. "Effects of regulated, precision and continuous deficit irrigation on the growth and productivity of a young super high-density olive orchard," Agricultural Water Management, Elsevier, vol. 286(C).
    2. Cameira, Maria do Rosário & Rodrigo, Isabel & Garção, Andreia & Neves, Manuela & Ferreira, Antónia & Paredes, Paula, 2024. "Linking participatory approach and rapid appraisal methods to select potential innovations in collective irrigation systems," Agricultural Water Management, Elsevier, vol. 299(C).
    3. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    4. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    5. Feng, Z.Y. & Qin, T. & Du, X.Z. & Sheng, F. & Li, C.F., 2021. "Effects of irrigation regime and rice variety on greenhouse gas emissions and grain yields from paddy fields in central China," Agricultural Water Management, Elsevier, vol. 250(C).
    6. Wen, Shenglin & Cui, Ningbo & Wang, Yaosheng & Gong, Daozhi & Xing, Liwen & Wu, Zongjun & Zhang, Yixuan & Zhao, Long & Fan, Junliang & Wang, Zhihui, 2024. "Optimizing deficit drip irrigation to improve yield,quality, and water productivity of apple in Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 296(C).
    7. Hou, Chenli & Tian, Delong & Xu, Bing & Ren, Jie & Hao, Lei & Chen, Ning & Li, Xianyue, 2021. "Use of the stable oxygen isotope method to evaluate the difference in water consumption and utilization strategy between alfalfa and maize fields in an arid shallow groundwater area," Agricultural Water Management, Elsevier, vol. 256(C).
    8. Liu, Haijun & Yin, Congyan & Gao, Zhuangzhuang & Hou, Lizhu, 2021. "Evaluation of cucumber yield, economic benefit and water productivity under different soil matric potentials in solar greenhouses in North China," Agricultural Water Management, Elsevier, vol. 243(C).
    9. Zhang, Tibin & Zou, Yufeng & Kisekka, Isaya & Biswas, Asim & Cai, Huanjie, 2021. "Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area," Agricultural Water Management, Elsevier, vol. 243(C).
    10. Wang, Feng & Meng, Haofeng & Xie, Ruizhi & Wang, Keru & Ming, Bo & Hou, Peng & Xue, Jun & Li, Shaokun, 2023. "Optimizing deficit irrigation and regulated deficit irrigation methods increases water productivity in maize," Agricultural Water Management, Elsevier, vol. 280(C).
    11. Sun, Guangzhao & Chen, Shuaihong & Zhang, Shaowu & Chen, Shaomin & Liu, Jie & He, Qiong & Hu, Tiantian & Zhang, Fucang, 2024. "Responses of leaf nitrogen status and leaf area index to water and nitrogen application and their relationship with apple orchard productivity," Agricultural Water Management, Elsevier, vol. 296(C).
    12. Tomaz, Alexandra & Palma, José Ferro & Ramos, Tiago & Costa, Maria Natividade & Rosa, Elizabete & Santos, Marta & Boteta, Luís & Dôres, José & Patanita, Manuel, 2021. "Yield, technological quality and water footprints of wheat under Mediterranean climate conditions: A field experiment to evaluate the effects of irrigation and nitrogen fertilization strategies," Agricultural Water Management, Elsevier, vol. 258(C).
    13. Masseroni, Daniele & Gangi, Fabiola & Galli, Andrea & Ceriani, Rodolfo & De Gaetani, Carlo & Gandolfi, Claudio, 2022. "Behind the efficiency of border irrigation: Lesson learned in Northern Italy," Agricultural Water Management, Elsevier, vol. 269(C).
    14. Gheysari, Mahdi & Pirnajmedin, Fatemeh & Movahedrad, Hamid & Majidi, Mohammad Mahdi & Zareian, Mohammad Javad, 2021. "Crop yield and irrigation water productivity of silage maize under two water stress strategies in semi-arid environment: Two different pot and field experiments," Agricultural Water Management, Elsevier, vol. 255(C).
    15. Sriphirom, Patikorn & Rossopa, Benjamas, 2023. "Assessment of greenhouse gas mitigation from rice cultivation using alternate wetting and drying and rice straw biochar in Thailand," Agricultural Water Management, Elsevier, vol. 290(C).
    16. Bakhshandeh, Esmaeil & Jamali, Mohsen & Emadi, Mostafa & Francaviglia, Rosa, 2022. "Greenhouse gas emissions and financial analysis of rice paddy production scenarios in northern Iran," Agricultural Water Management, Elsevier, vol. 272(C).
    17. Bao, Xiaoyuan & Zhang, Baoyuan & Dai, Menglei & Liu, Xuejing & Ren, Jianhong & Gu, Limin & Zhen, Wenchao, 2024. "Improvement of grain weight and crop water productivity in winter wheat by light and frequent irrigation based on crop evapotranspiration," Agricultural Water Management, Elsevier, vol. 301(C).
    18. Amarasinghe, Upali A. & Sikka, Alok & Mandave, Vidya & Panda, R. K. & Gorantiwar, S. & Ambast, S. K., 2021. "Improving economic water productivity to enhance resilience in canal irrigation systems: a pilot study of the Sina Irrigation System in Maharashtra, India," Papers published in Journals (Open Access), International Water Management Institute, pages 23(2):447-4.
    19. Saitta, Daniela & Consoli, Simona & Ferlito, Filippo & Torrisi, Biagio & Allegra, Maria & Longo-Minnolo, Giuseppe & Ramírez-Cuesta, Juan Miguel & Vanella, Daniela, 2021. "Adaptation of citrus orchards to deficit irrigation strategies," Agricultural Water Management, Elsevier, vol. 247(C).
    20. Srinivasan, M.S. & Measures, Richard & Muller, Carla & Neal, Mark & Rajanayaka, Channa & Shankar, Ude & Elley, Graham, 2021. "Comparing the water use metrics of just-in-case, just-in-time and justified irrigation strategies using a scenario-based tool," Agricultural Water Management, Elsevier, vol. 258(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:247:y:2021:i:c:s0378377421000068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.