IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v243y2021ics0378377420311471.html
   My bibliography  Save this article

An ecohydrological perspective of reconstructed vegetation in the semi-arid region in drought seasons

Author

Listed:
  • Cheng, Yiben
  • Zhan, Hongbin
  • Yang, Wenbin
  • Jiang, Qunou
  • Wang, Yunqi
  • Guo, Fuqiang

Abstract

Desertification has long seriously threatened the ecological security of northern China, for which China has established the world's largest shelterbelt project. After 40 years of reconstruction of vegetation, the trend of desertification in northern China has been reversed. The shelterbelt forest project in northern China, however, at the same time, tells signs of degradation, and therefore its effectiveness has been questioned by scientists from various countries. In order to study the impact of the vegetation reconstruction process in the semi-arid area on the precipitation water redistribution process in this area, and how the reconstructed vegetation survives in dry season. This study selected the reconstruction Pinus sylvestris var. Mongolica (PSM) forest on Mu Us sandy land as the research object, and used new lysimeters, stem flow meters, miniature weather stations, etc. to monitor the deep soil water penetration, stem flux. The purpose of this current study is to find out how PSM forest changed the process of precipitation water redistribution in this area, and how PSM adjusts its own water storage capacity to adapt to the annual precipitation changes. In wet years such as 2017, DSR is only 0.4 mm, soil water storage is reduced by 16 mm, and evapotranspiration is 324.6 mm. In a wet year such as 2016, the DSR is 1.4 mm, the soil water storage is enlarged by 38.06 mm, and the evapotranspiration is 466.94 mm. The results showed that the water consumption of PSM in Mu Us area and the precipitation water replenishment in this area reached a balance but blocked precipitation to recharge deep soil water and groundwater. The rain-fed PSM stem can be used as a reservoir unit to supply water consumption and adjusting the evapotranspiration intensity to adapt to changes in annual precipitation. This research has advanced our understanding of the scale of reconstruction vegetation utilization of precipitation and the utilization mechanism of tree stem storage water in semi-arid areas.

Suggested Citation

  • Cheng, Yiben & Zhan, Hongbin & Yang, Wenbin & Jiang, Qunou & Wang, Yunqi & Guo, Fuqiang, 2021. "An ecohydrological perspective of reconstructed vegetation in the semi-arid region in drought seasons," Agricultural Water Management, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:agiwat:v:243:y:2021:i:c:s0378377420311471
    DOI: 10.1016/j.agwat.2020.106488
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420311471
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106488?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas Downing & Lasse Ringius & Mike Hulme & Dominic Waughray, 1997. "Adapting to climate change in Africa," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 2(1), pages 19-44, March.
    2. Chi Chen & Taejin Park & Xuhui Wang & Shilong Piao & Baodong Xu & Rajiv K. Chaturvedi & Richard Fuchs & Victor Brovkin & Philippe Ciais & Rasmus Fensholt & Hans Tømmervik & Govindasamy Bala & Zaichun , 2019. "China and India lead in greening of the world through land-use management," Nature Sustainability, Nature, vol. 2(2), pages 122-129, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tan Huizhi & Lu Xiaoning & Yang Shiqi & Wang Yongqian & Li Feng & Liu Jinbao & Chen Jun & Huang Yue, 2022. "Drought risk assessment in the coupled spatial–temporal dimension of the Sichuan Basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3205-3233, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongdeng Lei & Jing’ai Wang & Yaojie Yue & Hongjian Zhou & Weixia Yin, 2014. "Rethinking the relationships of vulnerability, resilience, and adaptation from a disaster risk perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 609-627, January.
    2. Nikolai Dronin, 2023. "Reasons to rename the UNCCD: Review of transformation of the political concept through the influence of science," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2058-2078, March.
    3. Pinki Mondal & Sonali Shukla McDermid, 2021. "Editorial for Special Issue: “Global Vegetation and Land Surface Dynamics in a Changing Climate”," Land, MDPI, vol. 10(1), pages 1-4, January.
    4. Lijuan Du & Li Xu & Yanping Li & Changshun Liu & Zhenhua Li & Jefferson S. Wong & Bo Lei, 2019. "China’s Agricultural Irrigation and Water Conservancy Projects: A Policy Synthesis and Discussion of Emerging Issues," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    5. B. Sonneveld & M. Keyzer & P. Adegbola & S. Pande, 2012. "The Impact of Climate Change on Crop Production in West Africa: An Assessment for the Oueme River Basin in Benin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 553-579, January.
    6. Songbai Hong & Jinzhi Ding & Fei Kan & Hao Xu & Shaoyuan Chen & Yitong Yao & Shilong Piao, 2023. "Asymmetry of carbon sequestrations by plant and soil after forestation regulated by soil nitrogen," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Liu, Shilei & Xia, Jun, 2021. "Forest harvesting restriction and forest restoration in China," Forest Policy and Economics, Elsevier, vol. 129(C).
    8. Liu, Yansui & Zhou, Yang, 2021. "Reflections on China's food security and land use policy under rapid urbanization," Land Use Policy, Elsevier, vol. 109(C).
    9. Li Yu & Fengxue Gu & Mei Huang & Bo Tao & Man Hao & Zhaosheng Wang, 2020. "Impacts of 1.5 °C and 2 °C Global Warming on Net Primary Productivity and Carbon Balance in China’s Terrestrial Ecosystems," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    10. Qi’ao Zhang & Wei Chen, 2021. "Ecosystem Water Use Efficiency in the Three-North Region of China Based on Long-Term Satellite Data," Sustainability, MDPI, vol. 13(14), pages 1-17, July.
    11. Sun, Xueqing & Xiang, Pengcheng & Cong, Kexin, 2023. "Research on early warning and control measures for arable land resource security," Land Use Policy, Elsevier, vol. 128(C).
    12. Yungang Hu & Guangchao Li & Wei Chen, 2022. "Remote Sensing of Ecosystem Water Use Efficiency in Different Ecozones of the North China Plain," Sustainability, MDPI, vol. 14(5), pages 1-13, February.
    13. Haochen Yu & Jiu Huang & Chuning Ji & Zi’ao Li, 2021. "Construction of a Landscape Ecological Network for a Large-Scale Energy and Chemical Industrial Base: A Case Study of Ningdong, China," Land, MDPI, vol. 10(4), pages 1-24, March.
    14. Yuke Zhou & Junfu Fan & Xiaoying Wang, 2020. "Assessment of varying changes of vegetation and the response to climatic factors using GIMMS NDVI3g on the Tibetan Plateau," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-25, June.
    15. Dang, Hongzhong & Han, Hui & Chen, Shuai & Li, Mingyang, 2021. "A fragile soil moisture environment exacerbates the climate change-related impacts on the water use by Mongolian Scots pine (Pinus sylvestris var. mongolica) in northern China: Long-term observations," Agricultural Water Management, Elsevier, vol. 251(C).
    16. Wu, Genan & Lu, Xinchen & Zhao, Wei & Cao, Ruochen & Xie, Wenqi & Wang, Liyun & Wang, Qiuhong & Song, Jiexuan & Gao, Shaobo & Li, Shenggong & Hu, Zhongmin, 2023. "The increasing contribution of greening to the terrestrial evapotranspiration in China," Ecological Modelling, Elsevier, vol. 477(C).
    17. Karen O’Brien and Robin Leichenko, 2007. "Human Security, Vulnerability and Sustainable Adaptation," Human Development Occasional Papers (1992-2007) HDOCPA-2007-09, Human Development Report Office (HDRO), United Nations Development Programme (UNDP).
    18. Yitao Li & Zhao-Liang Li & Hua Wu & Chenghu Zhou & Xiangyang Liu & Pei Leng & Peng Yang & Wenbin Wu & Ronglin Tang & Guo-Fei Shang & Lingling Ma, 2023. "Biophysical impacts of earth greening can substantially mitigate regional land surface temperature warming," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. Chenglai Wu & Zhaohui Lin & Yaping Shao & Xiaohong Liu & Ying Li, 2022. "Drivers of recent decline in dust activity over East Asia," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Chao Li & Xuemei Li & Dongliang Luo & Yi He & Fangfang Chen & Bo Zhang & Qiyong Qin, 2021. "Spatiotemporal Pattern of Vegetation Ecology Quality and Its Response to Climate Change between 2000–2017 in China," Sustainability, MDPI, vol. 13(3), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:243:y:2021:i:c:s0378377420311471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.