IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i5p2526-d755811.html
   My bibliography  Save this article

Remote Sensing of Ecosystem Water Use Efficiency in Different Ecozones of the North China Plain

Author

Listed:
  • Yungang Hu

    (Beijing Key Laboratory for Architectural Heritage Fine Reconstruction & Health Monitoring, School of Geomatics and Urban Spatial Information, Beijing University of Civil Engineering and Architecture, Beijing 100044, China)

  • Guangchao Li

    (College of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing 100083, China)

  • Wei Chen

    (College of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing 100083, China)

Abstract

Water use efficiency (WUE), as an environmental factor of metabolism in different ecosystem functional areas, is a key indicator of the ecosystem carbon-water cycle. WUE is defined as the ratio of carbon absorbed by ecosystems to water evaporated. Exploring the spatiotemporal variation in carbon and water cycles in different ecological zones of the North China Plain and their driving factors is important for the ecological management and sustainable development of the different ecological zones in the North China Plain. Based on remote sensing data products, this paper studies the spatiotemporal variations of WUE and their driving factors in different ecological functional areas of the North China Plain from 2001 to 2017. This study found that: (1) The spatial distribution of WUE and gross primary production (GPP) in the North China Plain is similar, with the multiyear average of WUE at 0.74 g C m − 2 y − 1 . The variation trend of WUE is mainly affected by the variation trend of GPP (44.38% of the area of the North China Plain). (2) The change trend of WUE mainly showed a mild decrease and a mild increase, accounting for 73.22% of the area of the North China Plain; the area with medium-low fluctuation of WUE accounted for the largest proportion, accounting for 59.90% of the area of the North China Plain. In addition, the multiyear average values of WUE in the ecological functional area are Qin Ling Mountains deciduous forests > Central China loess plateau mixed forests > Mongolian-Manchurian grassland > Ordos Plateau steppe > Changjiang Plain evergreen forests > Huang He Plain mixed forests > Bohai Sea saline meadow, in the order from high to low. (3) The influence of precipitation on WUE was higher than that of temperature. The area of WUE that increased with the increase of precipitation accounted for 23.74% of the area of the North China Plain and was mainly distributed in the Qin Ling Mountains deciduous forests, Changjiang Plain evergreen forests, and Huang He Plain mixed forests’ ecological functional areas. The results of the study can provide a reference and theoretical basis for the conservation and management of carbon and water cycles in the functional areas of North China’s ecosystems.

Suggested Citation

  • Yungang Hu & Guangchao Li & Wei Chen, 2022. "Remote Sensing of Ecosystem Water Use Efficiency in Different Ecozones of the North China Plain," Sustainability, MDPI, vol. 14(5), pages 1-13, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2526-:d:755811
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/5/2526/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/5/2526/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chi Chen & Taejin Park & Xuhui Wang & Shilong Piao & Baodong Xu & Rajiv K. Chaturvedi & Richard Fuchs & Victor Brovkin & Philippe Ciais & Rasmus Fensholt & Hans Tømmervik & Govindasamy Bala & Zaichun , 2019. "China and India lead in greening of the world through land-use management," Nature Sustainability, Nature, vol. 2(2), pages 122-129, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolai Dronin, 2023. "Reasons to rename the UNCCD: Review of transformation of the political concept through the influence of science," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2058-2078, March.
    2. Pinki Mondal & Sonali Shukla McDermid, 2021. "Editorial for Special Issue: “Global Vegetation and Land Surface Dynamics in a Changing Climate”," Land, MDPI, vol. 10(1), pages 1-4, January.
    3. Lijuan Du & Li Xu & Yanping Li & Changshun Liu & Zhenhua Li & Jefferson S. Wong & Bo Lei, 2019. "China’s Agricultural Irrigation and Water Conservancy Projects: A Policy Synthesis and Discussion of Emerging Issues," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    4. Songbai Hong & Jinzhi Ding & Fei Kan & Hao Xu & Shaoyuan Chen & Yitong Yao & Shilong Piao, 2023. "Asymmetry of carbon sequestrations by plant and soil after forestation regulated by soil nitrogen," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Liu, Shilei & Xia, Jun, 2021. "Forest harvesting restriction and forest restoration in China," Forest Policy and Economics, Elsevier, vol. 129(C).
    6. Liu, Yansui & Zhou, Yang, 2021. "Reflections on China's food security and land use policy under rapid urbanization," Land Use Policy, Elsevier, vol. 109(C).
    7. Li Yu & Fengxue Gu & Mei Huang & Bo Tao & Man Hao & Zhaosheng Wang, 2020. "Impacts of 1.5 °C and 2 °C Global Warming on Net Primary Productivity and Carbon Balance in China’s Terrestrial Ecosystems," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    8. Qi’ao Zhang & Wei Chen, 2021. "Ecosystem Water Use Efficiency in the Three-North Region of China Based on Long-Term Satellite Data," Sustainability, MDPI, vol. 13(14), pages 1-17, July.
    9. Sun, Xueqing & Xiang, Pengcheng & Cong, Kexin, 2023. "Research on early warning and control measures for arable land resource security," Land Use Policy, Elsevier, vol. 128(C).
    10. Haochen Yu & Jiu Huang & Chuning Ji & Zi’ao Li, 2021. "Construction of a Landscape Ecological Network for a Large-Scale Energy and Chemical Industrial Base: A Case Study of Ningdong, China," Land, MDPI, vol. 10(4), pages 1-24, March.
    11. Yuke Zhou & Junfu Fan & Xiaoying Wang, 2020. "Assessment of varying changes of vegetation and the response to climatic factors using GIMMS NDVI3g on the Tibetan Plateau," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-25, June.
    12. Dang, Hongzhong & Han, Hui & Chen, Shuai & Li, Mingyang, 2021. "A fragile soil moisture environment exacerbates the climate change-related impacts on the water use by Mongolian Scots pine (Pinus sylvestris var. mongolica) in northern China: Long-term observations," Agricultural Water Management, Elsevier, vol. 251(C).
    13. Wu, Genan & Lu, Xinchen & Zhao, Wei & Cao, Ruochen & Xie, Wenqi & Wang, Liyun & Wang, Qiuhong & Song, Jiexuan & Gao, Shaobo & Li, Shenggong & Hu, Zhongmin, 2023. "The increasing contribution of greening to the terrestrial evapotranspiration in China," Ecological Modelling, Elsevier, vol. 477(C).
    14. Yitao Li & Zhao-Liang Li & Hua Wu & Chenghu Zhou & Xiangyang Liu & Pei Leng & Peng Yang & Wenbin Wu & Ronglin Tang & Guo-Fei Shang & Lingling Ma, 2023. "Biophysical impacts of earth greening can substantially mitigate regional land surface temperature warming," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Chenglai Wu & Zhaohui Lin & Yaping Shao & Xiaohong Liu & Ying Li, 2022. "Drivers of recent decline in dust activity over East Asia," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Chao Li & Xuemei Li & Dongliang Luo & Yi He & Fangfang Chen & Bo Zhang & Qiyong Qin, 2021. "Spatiotemporal Pattern of Vegetation Ecology Quality and Its Response to Climate Change between 2000–2017 in China," Sustainability, MDPI, vol. 13(3), pages 1-22, January.
    17. Sun, Wenyi & Ding, Xiaotong & Su, Jingbo & Mu, Xingmin & Zhang, Yongqiang & Gao, Peng & Zhao, Guangju, 2022. "Land use and cover changes on the Loess Plateau: A comparison of six global or national land use and cover datasets," Land Use Policy, Elsevier, vol. 119(C).
    18. Liu, Zhengjia & Wang, Jieyong & Wang, Xiaoyue & Wang, Yongsheng, 2020. "Understanding the impacts of ‘Grain for Green’ land management practice on land greening dynamics over the Loess Plateau of China," Land Use Policy, Elsevier, vol. 99(C).
    19. Xunming Wang & Quansheng Ge & Xin Geng & Zhaosheng Wang & Lei Gao & Brett A. Bryan & Shengqian Chen & Yanan Su & Diwen Cai & Jiansheng Ye & Jimin Sun & Huayu Lu & Huizheng Che & Hong Cheng & Hongyan L, 2023. "Unintended consequences of combating desertification in China," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Ke Li & Lei Gao & Zhaoxia Guo & Yucheng Dong & Enayat A. Moallemi & Gang Kou & Meiqian Chen & Wenhao Lin & Qi Liu & Michael Obersteiner & Matteo Pedercini & Brett A. Bryan, 2024. "Safeguarding China’s long-term sustainability against systemic disruptors," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2526-:d:755811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.