IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v243y2021ics0378377420302419.html
   My bibliography  Save this article

Variation in the flow rate of drip emitters in a subsurface irrigation system for different soil types

Author

Listed:
  • Nogueira, Virgílio Henrique Barros
  • Diotto, Adriano Valentim
  • Thebaldi, Michael Silveira
  • Colombo, Alberto
  • Silva, Yasmin Fernandes
  • Lima, Elvis Marcio de Castro
  • Resende, Gabriel Felipe Lima

Abstract

Several studies have shown that irrigation is essential for global agricultural development. However, water is a limited resource and should be used as efficiently as possible, which requires appropriate management. As such, the search for irrigation techniques that are more efficient in terms of water use, such as subsurface drip irrigation, is ongoing. Subsurface drip irrigation systems are highly efficient and can serve as suitable alternatives for the rational management of water. However, these systems also have limitations; specifically, variation in flow rate can occur depending on the soil characteristics. Subsurface drip irrigation systems covered by only a thin soil layer have been used, especially in irrigated coffee crops in Brazil; however, most related studies have investigated the variation in the flow rate at relatively great soil depths. Thus, the objective of the present study was to evaluate two emitters buried at a depth of 5 cm to determine the variation in the flow rate within four different soil types, and assess the wet-bulb. The evaluated soil types were classified as a sandy loam, silty loam, clay loam or clay, and the two emitters evaluated included a pressure-compensating drip emitter (PC) and a non-pressure-compensating model (NPC). With respect to the PC emitter, a flow rate reduction was detected only in the clay loam soil, but with respect to the NPC emitter, a reduction in the flow rate was detected in a sandy loam and clay loam. The flow rate varied even at shallow depths for some soils, and the soil type and emitter flow rate affected this variation, as well as the water distribution in the wet-bulb. Thus, this variation should be considered even for systems installed at shallow depths.

Suggested Citation

  • Nogueira, Virgílio Henrique Barros & Diotto, Adriano Valentim & Thebaldi, Michael Silveira & Colombo, Alberto & Silva, Yasmin Fernandes & Lima, Elvis Marcio de Castro & Resende, Gabriel Felipe Lima, 2021. "Variation in the flow rate of drip emitters in a subsurface irrigation system for different soil types," Agricultural Water Management, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:agiwat:v:243:y:2021:i:c:s0378377420302419
    DOI: 10.1016/j.agwat.2020.106485
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420302419
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106485?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ayars, J. E. & Phene, C. J. & Hutmacher, R. B. & Davis, K. R. & Schoneman, R. A. & Vail, S. S. & Mead, R. M., 1999. "Subsurface drip irrigation of row crops: a review of 15 years of research at the Water Management Research Laboratory," Agricultural Water Management, Elsevier, vol. 42(1), pages 1-27, September.
    2. Ren, Changjiang & Zhao, Yong & Wang, Jianhua & Bai, Dan & Zhao, Xinyu & Tian, Jiyang, 2017. "Lateral hydraulic performance of subsurface drip irrigation based on spatial variability of soil: Simulation," Agricultural Water Management, Elsevier, vol. 193(C), pages 232-239.
    3. Ren, ChangJiang & Zhao, Yong & Dan, Bai & Wang, Jianhua & Gong, JiaGuo & He, GuoHua, 2018. "Lateral hydraulic performance of subsurface drip irrigation based on spatial variability of soil: experiment," Agricultural Water Management, Elsevier, vol. 204(C), pages 118-125.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Haitao & Qiu, Xuefeng & Liang, Xiaoyang & Wang, Hang & Wang, Jiandong, 2024. "Biogas slurry change the transport and distribution of soil water under drip irrigation," Agricultural Water Management, Elsevier, vol. 294(C).
    2. Chaoxi Li & Zhiqin Li & Peisen Du & Juanjuan Ma & Simin Li, 2023. "Mechanism Analysis of the Influence of Structural Parameters on the Hydraulic Performance of the Novel Y-Shaped Emitter," Agriculture, MDPI, vol. 13(6), pages 1-17, May.
    3. Wang, Ce & Ye, Jinyang & Zhai, Yaming & Kurexi, Wuerkaixi & Xing, Dong & Feng, Genxiang & Zhang, Qun & Zhang, Zhanyu, 2023. "Dynamics of Moistube discharge, soil-water redistribution and wetting morphology in response to regulated working pressure heads," Agricultural Water Management, Elsevier, vol. 282(C).
    4. Wang, Jian & Tian, Zuokun & Yang, Ting & Li, Xuechun & He, Qiu & Wang, Duo & Chen, Rui, 2024. "Characteristics of limited flow and soil water infiltration boundary of a subsurface drip irrigation emitter in silty loam soil," Agricultural Water Management, Elsevier, vol. 291(C).
    5. Wang, Jiaxin & He, Xinlin & Gong, Ping & Heng, Tong & Zhao, Danqi & Wang, Chunxia & Chen, Quan & Wei, Jie & Lin, Ping & Yang, Guang, 2024. "Response of fragrant pear quality and water productivity to lateral depth and irrigation amount," Agricultural Water Management, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Yaohui & Yao, Chunping & Wu, Pute & Zhang, Lin & Zhu, Delan & Chen, Junying & Du, Yichao, 2021. "Effectiveness of a subsurface irrigation system with ceramic emitters under low-pressure conditions," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Komlan Koudahe & Aleksey Y. Sheshukov & Jonathan Aguilar & Koffi Djaman, 2021. "Irrigation-Water Management and Productivity of Cotton: A Review," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    3. Himanshu, Sushil Kumar & Ale, Srinivasulu & Bordovsky, James & Darapuneni, Murali, 2019. "Evaluation of crop-growth-stage-based deficit irrigation strategies for cotton production in the Southern High Plains," Agricultural Water Management, Elsevier, vol. 225(C).
    4. Haomiao Cheng & Qilin Yu & Mohmed A. M. Abdalhi & Fan Li & Zhiming Qi & Tengyi Zhu & Wei Cai & Xiaoping Chen & Shaoyuan Feng, 2022. "RZWQM2 Simulated Drip Fertigation Management to Improve Water and Nitrogen Use Efficiency of Maize in a Solar Greenhouse," Agriculture, MDPI, vol. 12(5), pages 1-14, May.
    5. Gao, Yang & Yang, Linlin & Shen, Xiaojun & Li, Xinqiang & Sun, Jingsheng & Duan, Aiwang & Wu, Laosheng, 2014. "Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 146(C), pages 1-10.
    6. Jackson, T.M. & Hanjra, Munir A. & Khan, S. & Hafeez, M.M., 2011. "Building a climate resilient farm: A risk based approach for understanding water, energy and emissions in irrigated agriculture," Agricultural Systems, Elsevier, vol. 104(9), pages 729-745.
    7. Sidhu, H.S. & Jat, M.L. & Singh, Yadvinder & Sidhu, Ravneet Kaur & Gupta, Naveen & Singh, Parvinder & Singh, Pankaj & Jat, H.S. & Gerard, Bruno, 2019. "Sub-surface drip fertigation with conservation agriculture in a rice-wheat system: A breakthrough for addressing water and nitrogen use efficiency," Agricultural Water Management, Elsevier, vol. 216(C), pages 273-283.
    8. Oweis, T.Y. & Farahani, H.J. & Hachum, A.Y., 2011. "Evapotranspiration and water use of full and deficit irrigated cotton in the Mediterranean environment in northern Syria," Agricultural Water Management, Elsevier, vol. 98(8), pages 1239-1248, May.
    9. Jackson, Tamara M. & Khan, Shahbaz & Hafeez, Mohsin, 2010. "A comparative analysis of water application and energy consumption at the irrigated field level," Agricultural Water Management, Elsevier, vol. 97(10), pages 1477-1485, October.
    10. Wang, Haidong & Wang, Naijiang & Quan, Hao & Zhang, Fucang & Fan, Junliang & Feng, Hao & Cheng, Minghui & Liao, Zhenqi & Wang, Xiukang & Xiang, Youzhen, 2022. "Yield and water productivity of crops, vegetables and fruits under subsurface drip irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 269(C).
    11. Chilin Wei & Yan Zhu & Jinzhu Zhang & Zhenhua Wang, 2021. "Evaluation of Suitable Mixture of Water and Air for Processing Tomato in Drip Irrigation in Xinjiang Oasis," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
    12. Sharma, Bharat & Molden, D. & Cook, Simon, 2015. "Water use efficiency in agriculture: measurement, current situation and trends," Book Chapters,, International Water Management Institute.
    13. Mehmet Şahin, 2023. "Potential Use of Subsurface Drip Irrigation Systems in Landscape Irrigation under Full and Limited Irrigation Conditions," Sustainability, MDPI, vol. 15(20), pages 1-19, October.
    14. Sharma, Bharat & Molden, D. & Cook, Simon, 2015. "Water use efficiency in agriculture: measurement, current situation and trends," IWMI Books, Reports H046807, International Water Management Institute.
    15. Pisciotta, Antonino & Di Lorenzo, Rosario & Santalucia, Gioacchino & Barbagallo, Maria Gabriella, 2018. "Response of grapevine (Cabernet Sauvignon cv) to above ground and subsurface drip irrigation under arid conditions," Agricultural Water Management, Elsevier, vol. 197(C), pages 122-131.
    16. Oweis, T. Y. & Hachum, A. Y., 2003. "Improving water productivity in the dry areas of West Asia and North Africa," IWMI Books, Reports H032642, International Water Management Institute.
    17. Aiello, Rosa & Cirelli, Giuseppe Luigi & Consoli, Simona, 2007. "Effects of reclaimed wastewater irrigation on soil and tomato fruits: A case study in Sicily (Italy)," Agricultural Water Management, Elsevier, vol. 93(1-2), pages 65-72, October.
    18. Zotarelli, L. & Dukes, M.D. & Scholberg, J.M.S. & Muñoz-Carpena, R. & Icerman, J., 2009. "Tomato nitrogen accumulation and fertilizer use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling," Agricultural Water Management, Elsevier, vol. 96(8), pages 1247-1258, August.
    19. Zotarelli, Lincoln & Scholberg, Johannes M. & Dukes, Michael D. & Muñoz-Carpena, Rafael & Icerman, Jason, 2009. "Tomato yield, biomass accumulation, root distribution and irrigation water use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling," Agricultural Water Management, Elsevier, vol. 96(1), pages 23-34, January.
    20. Yu, Yingduo & Shihong, Gong & Xu, Di & Jiandong, Wang & Ma, Xiaopeng, 2010. "Effects of Treflan injection on winter wheat growth and root clogging of subsurface drippers," Agricultural Water Management, Elsevier, vol. 97(5), pages 723-730, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:243:y:2021:i:c:s0378377420302419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.