IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v155y2015icp48-52.html
   My bibliography  Save this article

Evaluating the performance of DRAINMOD using soil hydraulic parameters derived by various methods

Author

Listed:
  • Qi, Zhiming
  • Singh, Ranvir
  • Helmers, Matthew J.
  • Zhou, Xiaobo

Abstract

The objective of this study was to determine which level of soil information would be sufficient to use with DRAINMOD in predicting subsurface drainage. The model was evaluated by predicting and comparing with observed monthly and annual subsurface drainage for 14 years (1990–2003) from Webster silty clay loam soil experimental plots located near Gilmore City, in Pocahontas County, Iowa, USA. Three groups of input soil hydraulic parameters were obtained by: (1) determining the soil texture and bulk density (BD) from the ISPAID7.1 Soil Survey Database, then inputting them into a pedotransfer function model (ROSETTA) to determine soil hydraulic parameters (denoted as SP_1); (2) analyzing the soil texture and organic matter (OM) content in laboratory and deriving the BD, field capacity (θ−33kPa) and wilting point (θ−1500kPa) from literature, then inputting them into ROSETTA to determine soil hydraulic parameters (SP_2); and (3) calibrated soil hydraulic parameters based on initial inputs from the Soil Survey Database plus ROSETTA (SP_3). All methods resulted in an acceptable level of accuracy in predicting monthly and annual subsurface drainage volume from the study site and the differences in model performance using all these methods were subtle. This suggests that ROSETTA in combination with the Soil Survey Database offers a quick and easy way to derive the soil hydraulic parameters for running DRAINMOD to simulate subsurface drainage systems in Iowa's subsurface drained landscape where site-specific soil hydraulic properties may not be available. This warrants further evaluation of the model performance at other sites to support the findings in this study.

Suggested Citation

  • Qi, Zhiming & Singh, Ranvir & Helmers, Matthew J. & Zhou, Xiaobo, 2015. "Evaluating the performance of DRAINMOD using soil hydraulic parameters derived by various methods," Agricultural Water Management, Elsevier, vol. 155(C), pages 48-52.
  • Handle: RePEc:eee:agiwat:v:155:y:2015:i:c:p:48-52
    DOI: 10.1016/j.agwat.2015.03.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377415000943
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.03.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prasher, S. O. & Madani, A. & Clemente, R. S. & Geng, G. Q. & Bhardwaj, A., 1996. "Evaluation of two water table management models for Atlantic Canada," Agricultural Water Management, Elsevier, vol. 32(1), pages 49-69, November.
    2. Singh, R. & Helmers, M.J. & Qi, Zhiming, 2006. "Calibration and validation of DRAINMOD to design subsurface drainage systems for Iowa's tile landscapes," Agricultural Water Management, Elsevier, vol. 85(3), pages 221-232, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Revuelta-Acosta, J.D. & Flanagan, D.C. & Engel, B.A. & King, K.W., 2021. "Improvement of the Water Erosion Prediction Project (WEPP) model for quantifying field scale subsurface drainage discharge," Agricultural Water Management, Elsevier, vol. 244(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salazar, Osvaldo & Wesström, Ingrid & Youssef, Mohamed A. & Skaggs, R. Wayne & Joel, Abraham, 2009. "Evaluation of the DRAINMOD-N II model for predicting nitrogen losses in a loamy sand under cultivation in south-east Sweden," Agricultural Water Management, Elsevier, vol. 96(2), pages 267-281, February.
    2. Negm, L.M. & Youssef, M.A. & Skaggs, R.W. & Chescheir, G.M. & Jones, J., 2014. "DRAINMOD–DSSAT model for simulating hydrology, soil carbon and nitrogen dynamics, and crop growth for drained crop land," Agricultural Water Management, Elsevier, vol. 137(C), pages 30-45.
    3. Matinzadeh, Mohammad Mehdi & Abedi Koupai, Jahangir & Sadeghi-Lari, Adnan & Nozari, Hamed & Shayannejad, Mohammad, 2017. "Development of an innovative integrated model for the simulation of nitrogen dynamics in farmlands with drainage systems using the system dynamics approach," Ecological Modelling, Elsevier, vol. 347(C), pages 11-28.
    4. Clemente, R. S. & Prasher, S. O. & Salehi, F., 1998. "Performance testing and validation of PESTFADE," Agricultural Water Management, Elsevier, vol. 37(3), pages 205-224, September.
    5. Qian, Yingzhi & Zhu, Yan & Ye, Ming & Huang, Jiesheng & Wu, Jingwei, 2021. "Experiment and numerical simulation for designing layout parameters of subsurface drainage pipes in arid agricultural areas," Agricultural Water Management, Elsevier, vol. 243(C).
    6. Liang, Hao & Qi, Zhiming & Hu, Kelin & Li, Baoguo & Prasher, Shiv O., 2018. "Modelling subsurface drainage and nitrogen losses from artificially drained cropland using coupled DRAINMOD and WHCNS models," Agricultural Water Management, Elsevier, vol. 195(C), pages 201-210.
    7. Turunen, M. & Warsta, L. & Paasonen-Kivekäs, M. & Nurminen, J. & Myllys, M. & Alakukku, L. & Äijö, H. & Puustinen, M. & Koivusalo, H., 2013. "Modeling water balance and effects of different subsurface drainage methods on water outflow components in a clayey agricultural field in boreal conditions," Agricultural Water Management, Elsevier, vol. 121(C), pages 135-148.
    8. Ale, Srinivasulu & Gowda, Prasanna H. & Mulla, David J. & Moriasi, Daniel N. & Youssef, Mohamed A., 2013. "Comparison of the performances of DRAINMOD-NII and ADAPT models in simulating nitrate losses from subsurface drainage systems," Agricultural Water Management, Elsevier, vol. 129(C), pages 21-30.
    9. Revuelta-Acosta, J.D. & Flanagan, D.C. & Engel, B.A. & King, K.W., 2021. "Improvement of the Water Erosion Prediction Project (WEPP) model for quantifying field scale subsurface drainage discharge," Agricultural Water Management, Elsevier, vol. 244(C).
    10. Jiang, Yao & Xu, Xu & Huang, Quanzhong & Huo, Zailin & Huang, Guanhua, 2016. "Optimizing regional irrigation water use by integrating a two-level optimization model and an agro-hydrological model," Agricultural Water Management, Elsevier, vol. 178(C), pages 76-88.
    11. Qi, Zhiming & Helmers, Matthew J. & Kaleita, Amy L., 2011. "Soil water dynamics under various agricultural land covers on a subsurface drained field in north-central Iowa, USA," Agricultural Water Management, Elsevier, vol. 98(4), pages 665-674, February.
    12. Salazar, Osvaldo & Wesström, Ingrid & Joel, Abraham, 2008. "Evaluation of DRAINMOD using saturated hydraulic conductivity estimated by a pedotransfer function model," Agricultural Water Management, Elsevier, vol. 95(10), pages 1135-1143, October.
    13. Singh, R. & Helmers, M.J. & Crumpton, W.G. & Lemke, D.W., 2007. "Predicting effects of drainage water management in Iowa's subsurface drained landscapes," Agricultural Water Management, Elsevier, vol. 92(3), pages 162-170, September.
    14. Ghane, Ehsan & Askar, Manal H., 2021. "Predicting the effect of drain depth on profitability and hydrology of subsurface drainage systems across the eastern USA," Agricultural Water Management, Elsevier, vol. 258(C).
    15. Gunn, Kpoti M. & Baule, William J. & Frankenberger, Jane R. & Gamble, Debra L. & Allred, Barry J. & Andresen, Jeff A. & Brown, Larry C., 2018. "Modeled climate change impacts on subirrigated maize relative yield in northwest Ohio," Agricultural Water Management, Elsevier, vol. 206(C), pages 56-66.
    16. Malakshahi, Amir- Ashkan & Darzi- Naftchali, Abdullah & Mohseni, Behrooz, 2020. "Analyzing water table depth fluctuation response to evapotranspiration involving DRAINMOD model," Agricultural Water Management, Elsevier, vol. 234(C).
    17. Jones, Christopher S. & Schilling, Keith E. & Seeman, Anthony, 2019. "Relating carbon and nitrogen transport from constructed farm drainage," Agricultural Water Management, Elsevier, vol. 213(C), pages 12-23.
    18. Feng, Genxiang & Zhang, Zhanyu & Wan, Changyu & Lu, Peirong & Bakour, Ahmad, 2017. "Effects of saline water irrigation on soil salinity and yield of summer maize (Zea mays L.) in subsurface drainage system," Agricultural Water Management, Elsevier, vol. 193(C), pages 205-213.
    19. Schilling, Keith E. & Streeter, Matthew T. & Vogelgesang, Jason & Jones, Christopher S. & Seeman, Anthony, 2020. "Subsurface nutrient export from a cropped field to an agricultural stream: Implications for targeting edge-of-field practices," Agricultural Water Management, Elsevier, vol. 241(C).
    20. Sloan, Brandon P. & Basu, Nandita B. & Mantilla, Ricardo, 2016. "Hydrologic impacts of subsurface drainage at the field scale: Climate, landscape and anthropogenic controls," Agricultural Water Management, Elsevier, vol. 165(C), pages 1-10.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:155:y:2015:i:c:p:48-52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.