IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v216y2019icp12-26.html
   My bibliography  Save this article

Waterlogging and coastal salinity management through land shaping and cropping intensification in climatically vulnerable Indian Sundarbans

Author

Listed:
  • Mandal, Uttam Kumar
  • Burman, D.
  • Bhardwaj, A.K.
  • Nayak, Dibyendu Bikas
  • Samui, Arpan
  • Mullick, Sourav
  • Mahanta, K.K.
  • Lama, T.D.
  • Maji, B.
  • Mandal, Subhasis
  • Raut, S.
  • Sarangi, S.K.

Abstract

Sundarbans in West Bengal, India located in the eastern coast of the Bay of Bengal is one of the vulnerable zones subjected to abrupt climate change. The region receives 2.7 times surplus rainfall as compared to crop evapotranspiration during monsoon months causing widespread waterlogging of the low lying agricultural fields and impedes the productivity. The present study assessed the effects of different land shaping models namely, farm pond (FP), deep furrow and high ridge (RF) and paddy cum fish (PCF) systems for rainwater harvesting in restoring the productivity of degraded coastal soils in Sundarbans. A water balance was run to estimate the soil moisture, crop evapotranspiration, runoff and water depth in the reservoir during normal, excess and deficit rainfall years. The average annual harvested runoff was 2709, 1650 and 1169 m3 per hectare in FP, RF and PCF systems, respectively. The runoff going out of the system was 19.5, 29.1 and 27.75% of the annual rainfall in FP, RF and PCF systems, respectively, whereas in monocrop rice-fallow system it was 34.6% of the annual rainfall. We estimated all the three components of water footprints (WF) i.e., blue WF (WFblue), green WF (WFgreen) and gray WF (WFgray) as an aggregative indicator to evaluate environmental impact. The results indicated that total as well as the components of WF was higher in rice-fallow and rice-rice systems than in each of the land shaping system. Large scale adoption of different land shaping systems increased the cropping intensity and net farm income and there was reduction in salinity during summer and waterlogging during rainy season and overall improvement in soil quality. The dominant soluble salts identified in the study region were NaCl and MgSO4.

Suggested Citation

  • Mandal, Uttam Kumar & Burman, D. & Bhardwaj, A.K. & Nayak, Dibyendu Bikas & Samui, Arpan & Mullick, Sourav & Mahanta, K.K. & Lama, T.D. & Maji, B. & Mandal, Subhasis & Raut, S. & Sarangi, S.K., 2019. "Waterlogging and coastal salinity management through land shaping and cropping intensification in climatically vulnerable Indian Sundarbans," Agricultural Water Management, Elsevier, vol. 216(C), pages 12-26.
  • Handle: RePEc:eee:agiwat:v:216:y:2019:i:c:p:12-26
    DOI: 10.1016/j.agwat.2019.01.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418309880
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.01.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Le, Thuy Ngan & Bregt, Arnold K. & van Halsema, Gerardo E. & Hellegers, Petra J.G.J. & Nguyen, Lam-Dao, 2018. "Interplay between land-use dynamics and changes in hydrological regime in the Vietnamese Mekong Delta," Land Use Policy, Elsevier, vol. 73(C), pages 269-280.
    2. B. Panigrahi & Sudhindra Panda & A. Agrawal, 2005. "Water Balance Simulation and Economic Analysis for Optimal Size of On-Farm Reservoir," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(3), pages 233-250, June.
    3. Tyagi, N. K. & Sharma, D. K. & Luthra, S. K., 2000. "Determination of evapotranspiration and crop coefficients of rice and sunflower with lysimeter," Agricultural Water Management, Elsevier, vol. 45(1), pages 41-54, June.
    4. Kumar, Shalander & Ramilan, Thiagarajah & Ramarao, C.A. & Rao, Ch. Srinivasa & Whitbread, Anthony, 2016. "Farm level rainwater harvesting across different agro climatic regions of India: Assessing performance and its determinants," Agricultural Water Management, Elsevier, vol. 176(C), pages 55-66.
    5. Rockström, Johan & Karlberg, Louise & Wani, Suhas P. & Barron, Jennie & Hatibu, Nuhu & Oweis, Theib & Bruggeman, Adriana & Farahani, Jalali & Qiang, Zhu, 2010. "Managing water in rainfed agriculture--The need for a paradigm shift," Agricultural Water Management, Elsevier, vol. 97(4), pages 543-550, April.
    6. Mandal, Uttam Kumar & Victor, U.S. & Srivastava, N.N. & Sharma, K.L. & Ramesh, V. & Vanaja, M. & Korwar, G.R. & Ramakrishna, Y.S., 2007. "Estimating yield of sorghum using root zone water balance model and spectral characteristics of crop in a dryland Alfisol," Agricultural Water Management, Elsevier, vol. 87(3), pages 315-327, February.
    7. Sharma, Bharat R. & Rao, K.V. & Vittal, K.P.R. & Ramakrishna, Y.S. & Amarasinghe, U., 2010. "Estimating the potential of rainfed agriculture in India: Prospects for water productivity improvements," Agricultural Water Management, Elsevier, vol. 97(1), pages 23-30, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dipanwita De & Chandan Surabhi Das, 2021. "Measuring Livelihood Sustainability by PCA in Indian Sundarban," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18424-18442, December.
    2. Krishnendu Ray & Suman Mondal & Md. Jahangir Kabir & Sukamal Sarkar & Kalyan Roy & Koushik Brahmachari & Argha Ghosh & Manoj K. Nanda & Sanchayeeta Misra & Supriya Ghorui & Rupak Goswami & Mohammed Ma, 2023. "Assessment of Economic Sustainability of Cropping Systems in the Salt–Affected Coastal Zone of West Bengal, India," Sustainability, MDPI, vol. 15(11), pages 1-25, May.
    3. Rupak Goswami & Riya Roy & Dipjyoti Gangopadhyay & Poulami Sen & Kalyan Roy & Sukamal Sarkar & Sanchayeeta Misra & Krishnendu Ray & Marta Monjardino & Mohammed Mainuddin, 2024. "Understanding Resource Recycling and Land Management to Upscale Zero-Tillage Potato Cultivation in the Coastal Indian Sundarbans," Land, MDPI, vol. 13(1), pages 1-23, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Datta, Nirupam, 2015. "Evaluating Impacts of Watershed Development Program on Agricultural Productivity, Income, and Livelihood in Bhalki Watershed of Bardhaman District, West Bengal," World Development, Elsevier, vol. 66(C), pages 443-456.
    2. Falk, Thomas & Kumar, Shalander & Srigiri, Srinivasa, 2019. "Experimental games for developing institutional capacity to manage common water infrastructure in India," Agricultural Water Management, Elsevier, vol. 221(C), pages 260-269.
    3. Deora, Shashank & Nanore, Gyanesh, 2019. "Socio economic impacts of Doha Model water harvesting structures in Jalna, Maharashtra," Agricultural Water Management, Elsevier, vol. 221(C), pages 141-149.
    4. Facon, T. & Mukherji, Aditi, 2010. "Small-scale irrigation: is this the future?," Conference Papers h043372, International Water Management Institute.
    5. Birhanu Zemadim Birhanu & Kalifa Traoré & Murali Krishna Gumma & Félix Badolo & Ramadjita Tabo & Anthony Michael Whitbread, 2019. "A watershed approach to managing rainfed agriculture in the semiarid region of southern Mali: integrated research on water and land use," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(5), pages 2459-2485, October.
    6. Nesterenko Sergey & Vyatkin Konstantin, 2017. "The study of land management and geographic information support of municipal building in Ukraine," Technology audit and production reserves, 1(33) 2017, Socionet;Technology audit and production reserves, vol. 1(4(33)), pages 24-28.
    7. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    8. Feng Huang & Baoguo Li, 2020. "What is the Redline Water Withdrawal for Crop Production in China?—Projection to 2030 Derived from the Past Twenty-Year Trajectory," Sustainability, MDPI, vol. 12(10), pages 1-14, May.
    9. Boini Narsimlu & J. V. N. S. Prasad & A. Amarender Reddy & Gajjala Ravindra Chary & Kodigal A. Gopinath & K. B. Sridhar & J. K. Balyan & Anil K. Kothari & Vinod Kumar Singh, 2024. "Catchment Storage Command Relationship for Sustainable Rainfed Agriculture in the Semi-Arid Regions of Rajasthan, India," Sustainability, MDPI, vol. 16(10), pages 1-21, May.
    10. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    11. Choudhury, B.U. & Singh, Anil Kumar & Pradhan, S., 2013. "Estimation of crop coefficients of dry-seeded irrigated rice–wheat rotation on raised beds by field water balance method in the Indo-Gangetic plains, India," Agricultural Water Management, Elsevier, vol. 123(C), pages 20-31.
    12. Dereje Mengistie & Desale Kidane, 2016. "Assessment of the Impact of Small-Scale Irrigation on Household Livelihood Improvement at Gubalafto District, North Wollo, Ethiopia," Agriculture, MDPI, vol. 6(3), pages 1-22, June.
    13. Ndung’u, M. & Mugwe, J.N. & Mucheru-Muna, M.W. & Ngetich, F.K. & Mairura, F.S. & Mugendi, D.N., 2023. "Tied-ridging and soil inputs enhance small-scale maize productivity and profitability under erratic rainfall conditions in central Kenya," Agricultural Water Management, Elsevier, vol. 286(C).
    14. Marta Antonelli & Martina Sartori, 2014. "Unfolding the Potential of the Virtual Water Concept. What is still under debate?," IEFE Working Papers 74, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    15. Meysam ABEDINPOUR, 2015. "Evaluation of growth-stage-specific crop coefficients of maize using weighing lysimeter," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 10(2), pages 99-104.
    16. Alam, Mohammad Faiz & Pavelic, Paul, 2020. "Underground Transfer of Floods for Irrigation (UTFI): exploring potential at the global scale," IWMI Research Reports H050008, International Water Management Institute.
    17. Benli, Bogachan & Kodal, Suleyman & Ilbeyi, Adem & Ustun, Haluk, 2006. "Determination of evapotranspiration and basal crop coefficient of alfalfa with a weighing lysimeter," Agricultural Water Management, Elsevier, vol. 81(3), pages 358-370, March.
    18. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    19. Francis Oremo & Richard Mulwa & Nicholas Oguge, 2021. "Sustainable water access and willingness of smallholder irrigators to pay for on-farm water storage systems in Tsavo sub-catchment, Kenya," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 1371-1391, February.
    20. Luigi Pari & Alessandro Suardi & Walter Stefanoni & Francesco Latterini & Nadia Palmieri, 2021. "Economic and Environmental Assessment of Two Different Rain Water Harvesting Systems for Agriculture," Sustainability, MDPI, vol. 13(7), pages 1-13, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:216:y:2019:i:c:p:12-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.