IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v21y2019i5d10.1007_s10668-018-0144-9.html
   My bibliography  Save this article

A watershed approach to managing rainfed agriculture in the semiarid region of southern Mali: integrated research on water and land use

Author

Listed:
  • Birhanu Zemadim Birhanu

    (International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), West and Central Africa (WCA))

  • Kalifa Traoré

    (Institut d’Economie Rurale (IER))

  • Murali Krishna Gumma

    (ICRISAT)

  • Félix Badolo

    (International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), West and Central Africa (WCA))

  • Ramadjita Tabo

    (International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), West and Central Africa (WCA))

  • Anthony Michael Whitbread

    (ICRISAT)

Abstract

Soil and water conservation (SWC) practices like that of erosion control and soil fertility measures were commonly practiced in the semiarid region of southern Mali since the 1980s. The SWC practices were mainly meant to increase water availability in the subsurface, reduce farm water runoff and gully formation and improve nutrient content of the soil, thereby increasing crop yield. Despite such efforts to promote at scale SWC practices, the landscape of southern Mali is still affected by high rates of runoff and soil erosion and low crop yield in farmers’ fields. Data are lacking on previous beneficial SWC practices that could be adapted for wider application. In this paper, a watershed approach to managing rainfed agriculture is presented to show potential benefits of SWC practices at field and watershed scales. The approach included (1) community participation in establishing and monitoring new sets of hydro-meteorological monitoring stations and field experiments; (2) studying the dynamics and consumptive water uses of different land uses over time; and (3) evaluating the biophysical and economic advantages of SWC practices implemented in the watershed. Results showed that over a period of 34 years (1980–2014) cropping area and consumptive water uses of crops (sorghum and cotton) increased at the expenses of natural vegetation. However, the yield of these crops remained low, indicating that soil fertility management and soil moisture were insufficient. In such cases, implementation of more SWC practices can help provide the additional soil moisture required.

Suggested Citation

  • Birhanu Zemadim Birhanu & Kalifa Traoré & Murali Krishna Gumma & Félix Badolo & Ramadjita Tabo & Anthony Michael Whitbread, 2019. "A watershed approach to managing rainfed agriculture in the semiarid region of southern Mali: integrated research on water and land use," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(5), pages 2459-2485, October.
  • Handle: RePEc:spr:endesu:v:21:y:2019:i:5:d:10.1007_s10668-018-0144-9
    DOI: 10.1007/s10668-018-0144-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-018-0144-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-018-0144-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zemadim, B. & McCartney, Matthew. & Langan, Simon. & Sharma, Bharat., 2013. "A Participatory Approach for Hydrometeorological Monitoring in the Blue Nile River Basin of Ethiopia," IWMI Research Reports H046390, International Water Management Institute.
    2. Giller, K.E. & Tittonell, P. & Rufino, M.C. & van Wijk, M.T. & Zingore, S. & Mapfumo, P. & Adjei-Nsiah, S. & Herrero, M. & Chikowo, R. & Corbeels, M. & Rowe, E.C. & Baijukya, F. & Mwijage, A. & Smith,, 2011. "Communicating complexity: Integrated assessment of trade-offs concerning soil fertility management within African farming systems to support innovation and development," Agricultural Systems, Elsevier, vol. 104(2), pages 191-203, February.
    3. Ollenburger, Mary H. & Descheemaeker, Katrien & Crane, Todd A. & Sanogo, Ousmane M. & Giller, Ken E., 2016. "Waking the Sleeping Giant: Agricultural intensification, extensification or stagnation in Mali's Guinea Savannah," Agricultural Systems, Elsevier, vol. 148(C), pages 58-70.
    4. McCartney, Matthew & Smakhtin, Vladimir, 2010. "Water storage in an era of climate change: addressing the challenge of increasing rainfall variability. Blue paper," IWMI Reports 212430, International Water Management Institute.
    5. Zemadim, B. & McCartney, Matthew & Langan, Simon & Sharma, Bharat, 2013. "A participatory approach for hydrometeorological monitoring in the Blue Nile River Basin of Ethiopia," IWMI Reports 201009, International Water Management Institute.
    6. Nin-Pratt, Alejandro, 2015. "Agricultural intensification in Africa: A regional analysis:," IFPRI discussion papers 1433, International Food Policy Research Institute (IFPRI).
    7. Unknown, 2008. "Institute of Agricultural Economics," Economics of Agriculture, Institute of Agricultural Economics, vol. 55(3).
    8. Kumar, Shalander & Ramilan, Thiagarajah & Ramarao, C.A. & Rao, Ch. Srinivasa & Whitbread, Anthony, 2016. "Farm level rainwater harvesting across different agro climatic regions of India: Assessing performance and its determinants," Agricultural Water Management, Elsevier, vol. 176(C), pages 55-66.
    9. Rockström, Johan & Karlberg, Louise & Wani, Suhas P. & Barron, Jennie & Hatibu, Nuhu & Oweis, Theib & Bruggeman, Adriana & Farahani, Jalali & Qiang, Zhu, 2010. "Managing water in rainfed agriculture--The need for a paradigm shift," Agricultural Water Management, Elsevier, vol. 97(4), pages 543-550, April.
    10. McCartney, Matthew & Smakhtin, Vladimir, 2010. "Water storage in an era of climate change: addressing the challenge of increasing rainfall variability. Blue paper," IWMI Research Reports H043122, International Water Management Institute.
    11. Doraiswamy, P.C. & McCarty, G.W. & Hunt, E.R. Jr. & Yost, R.S. & Doumbia, M. & Franzluebbers, A.J., 2007. "Modeling soil carbon sequestration in agricultural lands of Mali," Agricultural Systems, Elsevier, vol. 94(1), pages 63-74, April.
    12. Kristie Ebi & Jonathan Padgham & Mamadou Doumbia & Alpha Kergna & Joel Smith & Tanveer Butt & Bruce McCarl, 2011. "Smallholders adaptation to climate change in Mali," Climatic Change, Springer, vol. 108(3), pages 423-436, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dayakar, Peddi & Kavi Kumar, K.S., 2024. "Soil and water conservation measures and rainfed agriculture in Telangana, India: Role of community and neighborhood conservation measures," Land Use Policy, Elsevier, vol. 137(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masih, I. & Maskey, S. & Uhlenbrook, S. & Smakhtin, V., 2011. "Impact of upstream changes in rain-fed agriculture on downstream flow in a semi-arid basin," Agricultural Water Management, Elsevier, vol. 100(1), pages 36-45.
    2. Descheemaeker, K. & Bunting, S. W. & Bindraban, P. & Muthuri, C. & Molden, D. & Beveridge, M. & van Brakel, Martin & Herrero, M. & Clement, Floriane & Boelee, Eline & Jarvis, D. I., 2013. "Increasing water productivity in Agriculture," Book Chapters,, International Water Management Institute.
    3. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    4. Marzia Ciampittiello & Aldo Marchetto & Angela Boggero, 2024. "Water Resources Management under Climate Change: A Review," Sustainability, MDPI, vol. 16(9), pages 1-14, April.
    5. Eriyagama, Nishadi & Smakhtin, V. & Udamulla, L., 2021. "Sustainable surface water storage development pathways and acceptable limits for river basins," Papers published in Journals (Open Access), International Water Management Institute, pages 1-13(5):645.
    6. Johnston, Robyn & Hoanh, Chu Thai & Lacombe, Guillaume & Lefroy, R. & Pavelic, Paul & Fry, Carolyn., 2012. "Managing water in rainfed agriculture in the Greater Mekong Subregion. Final report prepared by IWMI for Swedish International Development Cooperation Agency (Sida)," IWMI Research Reports H044646, International Water Management Institute.
    7. Sekyi-Annan, Ephraim & Tischbein, Bernhard & Diekkrüger, Bernd & Khamzina, Asia, 2018. "Performance evaluation of reservoir-based irrigation schemes in the Upper East region of Ghana," Agricultural Water Management, Elsevier, vol. 202(C), pages 134-145.
    8. Villholth, Karen, 2015. "Groundwater for food production and livelihoods - the nexus with climate change and transboundary water management," Book Chapters,, International Water Management Institute.
    9. Boelee, Eline & Scherr, S. J. & Pert, P. L. & Barron, J. & Finlayson, M. & Descheemaeker, K. & Milder, J. C. & Fleiner, R. & Nguyen-Khoa, S. & Barchiesi, S. & Bunting, S. W. & Tharme, R. E. & Khaka, E, 2013. "Management of water and agroecosystems in landscapes for sustainable food security," Book Chapters,, International Water Management Institute.
    10. Giller, Ken E. & Andersson, Jens & Delaune, Thomas & Silva, João Vasco & Descheemaeker, Katrien & van de Ven, Gerrie & Schut, Antonius G.T. & van Wijk, Mark & Hammond, Jim & Hochman, Zvi & Taulya, God, 2022. "IFAD Research Series 83: The future of farming: who will produce our food?," IFAD Research Series 322005, International Fund for Agricultural Development (IFAD).
    11. Alam, Mohammad Faiz & Pavelic, Paul, 2020. "Underground Transfer of Floods for Irrigation (UTFI): exploring potential at the global scale," IWMI Research Reports H050008, International Water Management Institute.
    12. Unknown, 2012. "Water for wealth and food security: supporting farmer-driven investments in agricultural water management. Synthesis report of the AgWater Solutions Project," IWMI Reports 158834, International Water Management Institute.
    13. Venot, Jean-Philippe & de Fraiture, Charlotte & Nti Acheampong, Ernest, 2012. "Revisiting dominant notions: a review of costs, performance and institutions of small reservoirs in sub-Saharan Africa," IWMI Research Reports 137587, International Water Management Institute.
    14. Narayanan, Kannan & Getachew, Ayele, 2020. "Investigating suitability of treated wastewater for agriculture in Hawassa, Sidama region, Ethiopia," International Journal of Agricultural Research, Innovation and Technology (IJARIT), IJARIT Research Foundation, vol. 10(2), December.
    15. Pramod Pandey & Pieter Zaag & Michelle Soupir & Vijay Singh, 2013. "A New Model for Simulating Supplemental Irrigation and the Hydro-Economic Potential of a Rainwater Harvesting System in Humid Subtropical Climates," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3145-3164, June.
    16. Thornton, P., 2012. "Impacts of climate change on the agricultural and aquatic systems and natural resources within the CGIAR\u2019s mandate. [Contributing authors include Vladimir Smakhtin of IWMI]," IWMI Working Papers H045156, International Water Management Institute.
    17. Falk, Thomas & Kumar, Shalander & Srigiri, Srinivasa, 2019. "Experimental games for developing institutional capacity to manage common water infrastructure in India," Agricultural Water Management, Elsevier, vol. 221(C), pages 260-269.
    18. Annet A. Mulema & Zelalem Lema & Elias Damtew & Aberra Adie & Zadoc Ogutu & Alan J. Duncan, 2017. "Stakeholders’ perceptions of integrated rainwater management approaches in the Blue Nile Basin of the Ethiopian highlands," Natural Resources Forum, Blackwell Publishing, vol. 41(4), pages 244-254, November.
    19. Wollenberg, E., 2012. "Setting the agenda: climate change adaptation and mitigation for food systems in the developing world," IWMI Working Papers H045821, International Water Management Institute.
    20. Janmaat, J. & Lapp, S. & Wannop, T. & Bharati, Luna & Sugden, Fraser, 2015. "Demonstrating complexity with a roleplaying simulation: investing in water in the Indrawati Subbasin, Nepal," IWMI Research Reports 229585, International Water Management Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:21:y:2019:i:5:d:10.1007_s10668-018-0144-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.