IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v213y2019icp957-967.html
   My bibliography  Save this article

Performance of subsurface drainage implemented with trencher and trenchless machineries

Author

Listed:
  • Salo, Heidi
  • Mellin, Ilkka
  • Sikkilä, Markus
  • Nurminen, Jyrki
  • Äijö, Helena
  • Paasonen-Kivekäs, Maija
  • Virtanen, Seija
  • Koivusalo, Harri

Abstract

The trenchless (T0) and trencher (T1) drainage installation methods are widely applied in Finland. There is an ongoing debate and a lack of science-based information about the performance differences between the methods. The objective was to assess drainage performance differences between T0 and T1 by analyzing groundwater table observations from field sections drained with the two methods. The differences were studied by using statistical analysis over a two-year period after the drainage installation. An experimental field in middle-Finland was divided into four T0 sections and four T1 sections. The groundwater level was manually measured about twice a week from seven locations in each section. Automatic recording was installed in one T0 section and one T1 section. The manual observations formed 56 time series, which were tested between the same-method plots (T0-T0 and T1-T1) and the different-method plots (T0-T1). Automatic data was used to validate the manual observations. In the T0 sections, 60–90% of the groundwater level observations were higher than those in the T1 sections. These observations had an average difference of 0.14–0.25 m. The variation in the groundwater level time series was larger between the T0 sections than between the T1 sections. Statistically significant differences between the same method field sections indicated that other factors also affected the groundwater table (soil type, etc.). However, the differences between T0 and T1 were stronger than those between the same-method sections, and the differences were clearest when the groundwater levels were above the drain depth (1.0 m). In the seasonal time series, the biggest differences were found during the autumn and winter periods. The average differences between T0 and T1 might not be significant in practice, but occasional larger (> 0.4 m) differences may have a short-term influence on field activities and crop growth.

Suggested Citation

  • Salo, Heidi & Mellin, Ilkka & Sikkilä, Markus & Nurminen, Jyrki & Äijö, Helena & Paasonen-Kivekäs, Maija & Virtanen, Seija & Koivusalo, Harri, 2019. "Performance of subsurface drainage implemented with trencher and trenchless machineries," Agricultural Water Management, Elsevier, vol. 213(C), pages 957-967.
  • Handle: RePEc:eee:agiwat:v:213:y:2019:i:c:p:957-967
    DOI: 10.1016/j.agwat.2018.12.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418306954
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.12.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tuohy, P. & Humphreys, J. & Holden, N.M. & Fenton, O., 2016. "Runoff and subsurface drain response from mole and gravel mole drainage across episodic rainfall events," Agricultural Water Management, Elsevier, vol. 169(C), pages 129-139.
    2. Ritzema, H.P. & Nijland, H.J. & Croon, F.W., 2006. "Subsurface drainage practices: From manual installation to large-scale implementation," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 60-71, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Ajay, 2019. "Poor-drainage-induced salinization of agricultural lands: Management through structural measures," Land Use Policy, Elsevier, vol. 82(C), pages 457-463.
    2. Christianson, Laura E. & Hanly, James A. & Hedley, Mike J., 2011. "Optimized denitrification bioreactor treatment through simulated drainage containment," Agricultural Water Management, Elsevier, vol. 99(1), pages 85-92.
    3. Ritzema, H.P. & Satyanarayana, T.V. & Raman, S. & Boonstra, J., 2008. "Subsurface drainage to combat waterlogging and salinity in irrigated lands in India: Lessons learned in farmers' fields," Agricultural Water Management, Elsevier, vol. 95(3), pages 179-189, March.
    4. Tuohy, P. & O’ Loughlin, J. & Peyton, D. & Fenton, O., 2018. "The performance and behavior of land drainage systems and their impact on field scale hydrology in an increasingly volatile climate," Agricultural Water Management, Elsevier, vol. 210(C), pages 96-107.
    5. Ritzema, H.P., 2016. "Drain for Gain: Managing salinity in irrigated lands—A review," Agricultural Water Management, Elsevier, vol. 176(C), pages 18-28.
    6. Xu Dou & Haibin Shi & Ruiping Li & Qingfeng Miao & Feng Tian & Dandan Yu & Liying Zhou & Bo Wang, 2021. "Effects of Controlled Drainage on the Content Change and Migration of Moisture, Nutrients, and Salts in Soil and the Yield of Oilseed Sunflower in the Hetao Irrigation District," Sustainability, MDPI, vol. 13(17), pages 1-19, September.
    7. Jouni, Hamidreza Javani & Liaghat, Abdolmajid & Hassanoghli, Alireza & Henk, Ritzema, 2018. "Managing controlled drainage in irrigated farmers’ fields: A case study in the Moghan plain, Iran," Agricultural Water Management, Elsevier, vol. 208(C), pages 393-405.
    8. Muhammad Ali Imran & Jinlan Xu & Muhammad Sultan & Redmond R. Shamshiri & Naveed Ahmed & Qaiser Javed & Hafiz Muhammad Asfahan & Yasir Latif & Muhammad Usman & Riaz Ahmad, 2021. "Free Discharge of Subsurface Drainage Effluent: An Alternate Design of the Surface Drain System in Pakistan," Sustainability, MDPI, vol. 13(7), pages 1-13, April.
    9. Ritzema, Henk & Abdel-Dayem, Safwat & El-Atfy, Hussein & Nasralla, Magdy Rashad & Shaheen, Hanny Saad, 2023. "Challenges in modernizing the subsurface drainage systems in Egypt," Agricultural Water Management, Elsevier, vol. 288(C).
    10. Li Zhao & Tong Heng & Lili Yang & Xuan Xu & Yue Feng, 2021. "Study on the Farmland Improvement Effect of Drainage Measures under Film Mulch with Drip Irrigation in Saline–Alkali Land in Arid Areas," Sustainability, MDPI, vol. 13(8), pages 1-18, April.
    11. Alavi, Seyed Abdollah & Naseri, Abd Ali & Bazaz, Azam & Ritzema, Henk & Hellegers, Petra, 2021. "Performance evaluation of the Hydroluis drainpipe-envelope system in a saline-sodic soil," Agricultural Water Management, Elsevier, vol. 243(C).
    12. Mohammad Valipour & Jens Krasilnikof & Stavros Yannopoulos & Rohitashw Kumar & Jun Deng & Paolo Roccaro & Larry Mays & Mark E. Grismer & Andreas N. Angelakis, 2020. "The Evolution of Agricultural Drainage from the Earliest Times to the Present," Sustainability, MDPI, vol. 12(1), pages 1-30, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:213:y:2019:i:c:p:957-967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.