IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v176y2016icp18-28.html
   My bibliography  Save this article

Drain for Gain: Managing salinity in irrigated lands—A review

Author

Listed:
  • Ritzema, H.P.

Abstract

At present, about 299Mha (or 18%) of the arable and permanent cropped areas worldwide are irrigated and, although drainage is an important component of irrigation, only 22% of these irrigated lands are drained. As a consequence, salinity and waterlogging problems affect about 10–16% of these areas because the natural drainage is not sufficient for controlling soil salinity levels. Additional, artificial drainage is needed to address this problem. Although the total area under irrigation continues to grow, very little is being invested in drainage systems to sustain the investments in irrigation. This is due in part to drainage being at the end of the pipeline where it has to clean up the “mess” that other activities leave behind: i.e. salts brought in by irrigation water, residues of fertilisers and pesticides etc. However, to move towards more reasonable sustainability, drainage has to be given its appropriate role in agricultural water management. In this paper seven reasons why drainage is needed are discussed, followed by seven aspects of why drainage is different than irrigation, and seven challenges to making drainage work. The paper concludes with a three-step approach reversing the negative trends in drainage management that result in salinity build-up in irrigated lands.

Suggested Citation

  • Ritzema, H.P., 2016. "Drain for Gain: Managing salinity in irrigated lands—A review," Agricultural Water Management, Elsevier, vol. 176(C), pages 18-28.
  • Handle: RePEc:eee:agiwat:v:176:y:2016:i:c:p:18-28
    DOI: 10.1016/j.agwat.2016.05.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377416301767
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.05.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Homaee, M. & Dirksen, C. & Feddes, R. A., 2002. "Simulation of root water uptake: I. Non-uniform transient salinity using different macroscopic reduction functions," Agricultural Water Management, Elsevier, vol. 57(2), pages 89-109, October.
    2. Piet Cruyningen, 2015. "Dealing with drainage: state regulation of drainage projects in the Dutch Republic, France, and England during the sixteenth and seventeenth centuries," Economic History Review, Economic History Society, vol. 68(2), pages 420-440, May.
    3. Oosterbaan, R. J., 1988. "Agricultural criteria for subsurface drainage: A systems analysis," Agricultural Water Management, Elsevier, vol. 14(1-4), pages 79-90, August.
    4. World Bank, 2004. "Drainage for Gain : Integrated Solutions to Drainage in Land and Water Management," World Bank Publications - Reports 14419, The World Bank Group.
    5. Sujata Gupta & Akram Javed & Divya Datt, 2003. "Economics of Flood Protection in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 28(1), pages 199-210, January.
    6. Margriet Caswell & Erik Lichtenberg & David Zilberman, 1990. "The Effects of Pricing Policies on Water Conservation and Drainage," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 72(4), pages 883-890.
    7. Saadat, Saeed & Homaee, Mehdi, 2015. "Modeling sorghum response to irrigation water salinity at early growth stage," Agricultural Water Management, Elsevier, vol. 152(C), pages 119-124.
    8. Ritzema, H.P. & Nijland, H.J. & Croon, F.W., 2006. "Subsurface drainage practices: From manual installation to large-scale implementation," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 60-71, November.
    9. Jesse H. Ausubel & Iddo K. Wernick & Paul E. Waggoner, 2013. "Peak Farmland and the Prospect for Land Sparing," Population and Development Review, The Population Council, Inc., vol. 38, pages 221-242, February.
    10. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture," IWMI Books, Reports H040193, International Water Management Institute.
    11. Ritzema, H.P. & Satyanarayana, T.V. & Raman, S. & Boonstra, J., 2008. "Subsurface drainage to combat waterlogging and salinity in irrigated lands in India: Lessons learned in farmers' fields," Agricultural Water Management, Elsevier, vol. 95(3), pages 179-189, March.
    12. Faures, J. M. & Svendsen, M. & Turral, Hugh & Berkhoff, J. & Bhattarai, M. & Caliz, A. M. & Darghouth, S. & Doukkali, M. R. & El-Kady, M. & Facon, T. & Gopalakrishnan, M. & Groenfeldt, D. & Hoanh, Chu, 2007. "Reinventing irrigation," IWMI Books, Reports H040202, International Water Management Institute.
    13. Homaee, M. & Feddes, R. A. & Dirksen, C., 2002. "Simulation of root water uptake: II. Non-uniform transient water stress using different reduction functions," Agricultural Water Management, Elsevier, vol. 57(2), pages 111-126, October.
    14. Anna C. Jonsson & Lotta Andersson & Johanna Alkan Olsson & Madelaine Johansson, 2011. "Defining goals in participatory water management: merging local visions and expert judgements," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 54(7), pages 909-935, September.
    15. de Fraiture, Charlotte & Molden, David & Wichelns, Dennis, 2010. "Investing in water for food, ecosystems, and livelihoods: An overview of the comprehensive assessment of water management in agriculture," Agricultural Water Management, Elsevier, vol. 97(4), pages 495-501, April.
    16. Pande, Saket & van den Boom, Bart & Savenije, Hubert H.G. & Gosain, Ashvani K., 2011. "Water valuation at basin scale with application to western India," Ecological Economics, Elsevier, vol. 70(12), pages 2416-2428.
    17. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture: summary," IWMI Books, Reports H039769, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. A. Prathapar & N. Rajmohan & B. R. Sharma & P. K. Aggarwal, 2018. "Vertical drains to minimize duration of seasonal waterlogging in Eastern Ganges Basin flood plains: a field experiment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 1-17, May.
    2. Abdullah Darzi-Naftchali & Henk Ritzema, 2018. "Integrating Irrigation and Drainage Management to Sustain Agriculture in Northern Iran," Sustainability, MDPI, vol. 10(6), pages 1-17, May.
    3. Ritzema, Henk & Abdel-Dayem, Safwat & El-Atfy, Hussein & Nasralla, Magdy Rashad & Shaheen, Hanny Saad, 2023. "Challenges in modernizing the subsurface drainage systems in Egypt," Agricultural Water Management, Elsevier, vol. 288(C).
    4. Jouni, Hamidreza Javani & Liaghat, Abdolmajid & Hassanoghli, Alireza & Henk, Ritzema, 2018. "Managing controlled drainage in irrigated farmers’ fields: A case study in the Moghan plain, Iran," Agricultural Water Management, Elsevier, vol. 208(C), pages 393-405.
    5. El-Ghannam, Mohamed K. & Aiad, Mahmoud. A. & Abdallah, Ahmed M., 2021. "Irrigation efficiency, drain outflow and yield responses to drain depth in the Nile delta clay soil, Egypt," Agricultural Water Management, Elsevier, vol. 246(C).
    6. Barnard, Johannes Hendrikus & Matthews, Nicolette & du Preez, Christiaan Cornelius, 2021. "Formulating and assessing best water and salt management practices: Lessons from non-saline and water-logged irrigated fields," Agricultural Water Management, Elsevier, vol. 247(C).
    7. Qian, Yingzhi & Zhu, Yan & Ye, Ming & Huang, Jiesheng & Wu, Jingwei, 2021. "Experiment and numerical simulation for designing layout parameters of subsurface drainage pipes in arid agricultural areas," Agricultural Water Management, Elsevier, vol. 243(C).
    8. Henine, Hocine & Jeantet, Alexis & Chaumont, Cédric & Chelil, Samy & Lauvernet, Claire & Tournebize, Julien, 2022. "Coupling of a subsurface drainage model with a soil reservoir model to simulate drainage discharge and drain flow start," Agricultural Water Management, Elsevier, vol. 262(C).
    9. Feng, Genxiang & Zhu, Chengli & Wu, Qingfeng & Wang, Ce & Zhang, Zhanyu & Mwiya, Richwell Mubita & Zhang, Li, 2021. "Evaluating the impacts of saline water irrigation on soil water-salt and summer maize yield in subsurface drainage condition using coupled HYDRUS and EPIC model," Agricultural Water Management, Elsevier, vol. 258(C).
    10. Barbara Kęsicka & Rafał Stasik & Michał Kozłowski & Adam Choryński, 2023. "Is Controlled Drainage of Agricultural Land a Common Used Practice?—A Bibliographic Analysis," Land, MDPI, vol. 12(9), pages 1-17, September.
    11. Xu Dou & Haibin Shi & Ruiping Li & Qingfeng Miao & Feng Tian & Dandan Yu & Liying Zhou & Bo Wang, 2021. "Effects of Controlled Drainage on the Content Change and Migration of Moisture, Nutrients, and Salts in Soil and the Yield of Oilseed Sunflower in the Hetao Irrigation District," Sustainability, MDPI, vol. 13(17), pages 1-19, September.
    12. Singh, Ajay, 2019. "Poor-drainage-induced salinization of agricultural lands: Management through structural measures," Land Use Policy, Elsevier, vol. 82(C), pages 457-463.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nouri, Milad & Homaee, Mehdi & Bannayan, Mohammad & Hoogenboom, Gerrit, 2017. "Towards shifting planting date as an adaptation practice for rainfed wheat response to climate change," Agricultural Water Management, Elsevier, vol. 186(C), pages 108-119.
    2. Lankford, B. & Makin, Ian & Matthews, N. & McCornick, Peter G. & Noble, A. & Shah, Tushaar, "undated". "A compact to revitalise large-scale irrigation systems using a leadership-partnership-ownership 'Theory of Change'," Papers published in Journals (Open Access) H047459, International Water Management Institute.
    3. Nhemachena, Charles & Matchaya, Greenwell & Nhlengethwa, Sibusiso & Nhemachena, C. R., . "Exploring ways to increase public investments in agricultural water management and irrigation for improved agricultural productivity in Southern Africa," Papers published in Journals (Open Access), International Water Management Institute, pages 44(3):474-4.
    4. Gurib-Fakim, A. & Smith, L. & Acikgoz, N. & Avato, P. & Bossio, Deborah & Ebi, K. & Goncalves, A. & Heinemann, J. A. & Herrmann, T. M. & Padgham, J. & Pennarz, J. & Scheidegger, U. & Sebastian, L. & T, 2009. "Options to enhance the impact of AKST on development and sustainability goals," IWMI Books, Reports H042792, International Water Management Institute.
    5. Namara, Regassa E. & Hanjra, Munir A. & Castillo, Gina E. & Ravnborg, Helle Munk & Smith, Lawrence & Van Koppen, Barbara, 2010. "Agricultural water management and poverty linkages," Agricultural Water Management, Elsevier, vol. 97(4), pages 520-527, April.
    6. Dench, William E. & Morgan, Leanne K., 2021. "Unintended consequences to groundwater from improved irrigation efficiency: Lessons from the Hinds-Rangitata Plain, New Zealand," Agricultural Water Management, Elsevier, vol. 245(C).
    7. de Fraiture, Charlotte & Molden, David & Wichelns, Dennis, 2010. "Investing in water for food, ecosystems, and livelihoods: An overview of the comprehensive assessment of water management in agriculture," Agricultural Water Management, Elsevier, vol. 97(4), pages 495-501, April.
    8. de Fraiture, Charlotte & Giordano, Meredith, 2014. "Small private irrigation: A thriving but overlooked sector," Agricultural Water Management, Elsevier, vol. 131(C), pages 167-174.
    9. Jalali, Vahidreza & Asadi Kapourchal, Safoora & Homaee, Mehdi, 2017. "Evaluating performance of macroscopic water uptake models at productive growth stages of durum wheat under saline conditions," Agricultural Water Management, Elsevier, vol. 180(PA), pages 13-21.
    10. Srivastava, P.K. & Singh, Raj Mohan, 2016. "GIS based integrated modelling framework for agricultural canal system simulation and management in Indo-Gangetic plains of India," Agricultural Water Management, Elsevier, vol. 163(C), pages 37-47.
    11. de Fraiture, Charlotte & Wichelns, Dennis, 2010. "Satisfying future water demands for agriculture," Agricultural Water Management, Elsevier, vol. 97(4), pages 502-511, April.
    12. Sun, Haoyang & Wang, Sufen & Hao, Xinmei, 2017. "An Improved Analytic Hierarchy Process Method for the evaluation of agricultural water management in irrigation districts of north China," Agricultural Water Management, Elsevier, vol. 179(C), pages 324-337.
    13. Turral, Hugh & Svendsen, Mark & Faures, Jean Marc, 2010. "Investing in irrigation: Reviewing the past and looking to the future," Agricultural Water Management, Elsevier, vol. 97(4), pages 551-560, April.
    14. Wang, Lichun & Ning, Songrui & Chen, Xiaoli & Li, Youli & Guo, Wenzhong & Ben-Gal, Alon, 2021. "Modeling tomato root water uptake influenced by soil salinity under drip irrigation with an inverse method," Agricultural Water Management, Elsevier, vol. 255(C).
    15. Nouri, Milad & Homaee, Mehdi & Bannayan, Mohammad & Hoogenboom, Gerrit, 2016. "Towards modeling soil texture-specific sensitivity of wheat yield and water balance to climatic changes," Agricultural Water Management, Elsevier, vol. 177(C), pages 248-263.
    16. Erenstein, Olaf, 2009. "Comparing water management in rice-wheat production systems in Haryana, India and Punjab, Pakistan," Agricultural Water Management, Elsevier, vol. 96(12), pages 1799-1806, December.
    17. Gurib-Fakim, Ameenah & Smith, Linda & Acikgoz, Nazimi & Avato, Patrick & Bossio, Deborah A. & Ebi, Kristie. & Goncalves, Andre & Heinemann, Jack A. & Herrmann, Thora Martina & Padgham, Jonathan & Penn, 2009. "Options to enhance the impact of AKST on development and sustainability goals," Book Chapters,, International Water Management Institute.
    18. Facon, T. & Mukherji, Aditi, 2010. "Small-scale irrigation: is this the future?," Conference Papers h043372, International Water Management Institute.
    19. Namara, Regassa E. & Hope, Lesley & Sarpong, Eric Owusu & De Fraiture, Charlotte & Owusu, Diana, 2014. "Adoption patterns and constraints pertaining to small-scale water lifting technologies in Ghana," Agricultural Water Management, Elsevier, vol. 131(C), pages 194-203.
    20. Levidow, Les & Zaccaria, Daniele & Maia, Rodrigo & Vivas, Eduardo & Todorovic, Mladen & Scardigno, Alessandra, 2014. "Improving water-efficient irrigation: Prospects and difficulties of innovative practices," Agricultural Water Management, Elsevier, vol. 146(C), pages 84-94.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:176:y:2016:i:c:p:18-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.