IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v213y2019icp792-802.html
   My bibliography  Save this article

A coupled model for simulating water flow and solute transport in furrow irrigation

Author

Listed:
  • Liu, Kun
  • Huang, Guanhua
  • Xu, Xu
  • Xiong, Yunwu
  • Huang, Quanzhong
  • Šimůnek, Jiří

Abstract

For optimal water and fertilizer management under furrow irrigation, it is important to understand the water and solute dynamics on the land surface and in the subsurface. An efficient mathematical tool is required to describe these dynamic processes. We propose a coupled model in which surface water flow and solute transport are described using the zero-inertia equation and the average cross-sectional convection-dispersion equation, respectively, while the two-dimensional Richards equation and the convection-dispersion equation are used to simulate water flow and solute transport in soils, respectively. Solutions are computed numerically using finite differences for surface water flow and finite volumes for solute transports in furrow. Subsurface water flow and solute transport equations are solved using the CHAIN_2D code. An iterative method is used to couple computations of surface and subsurface processes. Both surface and subsurface water flow and solute transport modules are coded in program subroutines and functions in the Intel FORTRAN environment. The coupled model was validated by comparing its simulation results with measured data. Results showed that simulated water front advances in the furrow and water contents in the soil agreed with the observations reasonably well. Good simulations can be achieved with a relatively fine temporal resolution. Numerical oscillations can be eliminated by adopting appropriate time steps. As compared with the traditional furrow irrigation model, the proposed model can better quantify soil water and solute dynamics by considering interactions between surface and subsurface water flow and solute transport processes. The proposed model can be used as a decision tool to design and manage furrow irrigation.

Suggested Citation

  • Liu, Kun & Huang, Guanhua & Xu, Xu & Xiong, Yunwu & Huang, Quanzhong & Šimůnek, Jiří, 2019. "A coupled model for simulating water flow and solute transport in furrow irrigation," Agricultural Water Management, Elsevier, vol. 213(C), pages 792-802.
  • Handle: RePEc:eee:agiwat:v:213:y:2019:i:c:p:792-802
    DOI: 10.1016/j.agwat.2018.11.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418304177
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.11.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Siyal, Altaf A. & Bristow, Keith L. & Šimůnek, Jirka, 2012. "Minimizing nitrogen leaching from furrow irrigation through novel fertilizer placement and soil surface management strategies," Agricultural Water Management, Elsevier, vol. 115(C), pages 242-251.
    2. Wang, Jun & Huang, Guanhua & Zhan, Hongbin & Mohanty, Binayak P. & Zheng, Jianhua & Huang, Quanzhong & Xu, Xu, 2014. "Evaluation of soil water dynamics and crop yield under furrow irrigation with a two-dimensional flow and crop growth coupled model," Agricultural Water Management, Elsevier, vol. 141(C), pages 10-22.
    3. Moreno, F. & Cabrera, F. & Andrew, L. & Vaz, R. & Martin-Aranda, J. & Vachaud, G., 1995. "Water movement and salt leaching in drained and irrigated marsh soils of southwest Spain," Agricultural Water Management, Elsevier, vol. 27(1), pages 25-44, April.
    4. Bautista, E. & Clemmens, A.J. & Strelkoff, T.S. & Schlegel, J., 2009. "Modern analysis of surface irrigation systems with WinSRFR," Agricultural Water Management, Elsevier, vol. 96(7), pages 1146-1154, July.
    5. Ghanbarian, Behzad & Ebrahimian, Hamed & Hunt, Allen G. & van Genuchten, M. Th., 2018. "Theoretical bounds for the exponent in the empirical power-law advance-time curve for surface flow," Agricultural Water Management, Elsevier, vol. 210(C), pages 208-216.
    6. Oster, J. D., 1994. "Irrigation with poor quality water," Agricultural Water Management, Elsevier, vol. 25(3), pages 271-297, July.
    7. Crevoisier, D. & Popova, Z. & Mailhol, J.C. & Ruelle, P., 2008. "Assessment and simulation of water and nitrogen transfer under furrow irrigation," Agricultural Water Management, Elsevier, vol. 95(4), pages 354-366, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastián Fuentes & Carlos Fuentes & Heber Saucedo & Carlos Chávez, 2022. "Border Irrigation Modeling with the Barré de Saint-Venant and Green and Ampt Equations," Mathematics, MDPI, vol. 10(7), pages 1-12, March.
    2. Bristow, Keith L. & Šimůnek, Jirka & Helalia, Sarah A. & Siyal, Altaf A., 2020. "Numerical simulations of the effects furrow surface conditions and fertilizer locations have on plant nitrogen and water use in furrow irrigated systems," Agricultural Water Management, Elsevier, vol. 232(C).
    3. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    4. Sebastián Fuentes & Carlos Chávez, 2022. "Modeling of Border Irrigation in Soils with the Presence of a Shallow Water Table. I: The Advance Phase," Agriculture, MDPI, vol. 12(3), pages 1-12, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jun & Huang, Guanhua & Zhan, Hongbin & Mohanty, Binayak P. & Zheng, Jianhua & Huang, Quanzhong & Xu, Xu, 2014. "Evaluation of soil water dynamics and crop yield under furrow irrigation with a two-dimensional flow and crop growth coupled model," Agricultural Water Management, Elsevier, vol. 141(C), pages 10-22.
    2. Mohammadi, Adel & Besharat, Sina & Abbasi, Fariborz, 2019. "Effects of irrigation and fertilization management on reducing nitrogen losses and increasing corn yield under furrow irrigation," Agricultural Water Management, Elsevier, vol. 213(C), pages 1116-1129.
    3. Bristow, Keith L. & Šimůnek, Jirka & Helalia, Sarah A. & Siyal, Altaf A., 2020. "Numerical simulations of the effects furrow surface conditions and fertilizer locations have on plant nitrogen and water use in furrow irrigated systems," Agricultural Water Management, Elsevier, vol. 232(C).
    4. Iqbal, Shahid & Guber, Andrey K. & Khan, Haroon Zaman, 2016. "Estimating nitrogen leaching losses after compost application in furrow irrigated soils of Pakistan using HYDRUS-2D software," Agricultural Water Management, Elsevier, vol. 168(C), pages 85-95.
    5. Ghiberto, P.J. & Pilatti, M.A. & Imhoff, S. & de Orellana, J.A., 2007. "Hydraulic conductivity of Molisolls irrigated with sodic-bicarbonated waters in Santa Fe (Argentine)," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 192-200, March.
    6. Singh, R.B. & Chauhan, C.P.S. & Minhas, P.S., 2009. "Water production functions of wheat (Triticum aestivum L.) irrigated with saline and alkali waters using double-line source sprinkler system," Agricultural Water Management, Elsevier, vol. 96(5), pages 736-744, May.
    7. Amin, M.G. Mostofa & Šimůnek, Jirka & Lægdsmand, Mette, 2014. "Simulation of the redistribution and fate of contaminants from soil-injected animal slurry," Agricultural Water Management, Elsevier, vol. 131(C), pages 17-29.
    8. Feng, Genxiang & Zhu, Chengli & Wu, Qingfeng & Wang, Ce & Zhang, Zhanyu & Mwiya, Richwell Mubita & Zhang, Li, 2021. "Evaluating the impacts of saline water irrigation on soil water-salt and summer maize yield in subsurface drainage condition using coupled HYDRUS and EPIC model," Agricultural Water Management, Elsevier, vol. 258(C).
    9. Morris, Michael R. & Hussain, Amjed & Gillies, Malcolm H. & O’Halloran, Nicholas J., 2015. "Inflow rate and border irrigation performance," Agricultural Water Management, Elsevier, vol. 155(C), pages 76-86.
    10. Pazouki, Ehsan, 2021. "A practical surface irrigation design based on fuzzy logic and meta-heuristic algorithms," Agricultural Water Management, Elsevier, vol. 256(C).
    11. Moreno, F. & Vaz, R. & Fernandez-Boy, E. & Cabrera, F., 2004. "Simulating the composition of the in situ soil solution by the model EXPRESO: application to a reclaimed marsh soil of SW Spain irrigated with saline water," Agricultural Water Management, Elsevier, vol. 66(2), pages 113-124, April.
    12. Karandish, Fatemeh & Šimůnek, Jiří, 2016. "A field-modeling study for assessing temporal variations of soil-water-crop interactions under water-saving irrigation strategies," Agricultural Water Management, Elsevier, vol. 178(C), pages 291-303.
    13. Wang, Xiangping & Huang, Guanhua & Yang, Jingsong & Huang, Quanzhong & Liu, Haijun & Yu, Lipeng, 2015. "An assessment of irrigation practices: Sprinkler irrigation of winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 159(C), pages 197-208.
    14. Nie, Wei-Bo & Dong, Shu-Xin & Li, Yi-Bo & Ma, Xiao-Yi, 2021. "Optimization of the border size on the irrigation district scale – Example of the Hetao irrigation district," Agricultural Water Management, Elsevier, vol. 248(C).
    15. Mehri, Akbar & Mohammadi, Amir Soltani & Ebrahimian, Hamed & Boroomandnasab, Saeid, 2023. "Evaluation and optimization of surge and alternate furrow irrigation performance in maize fields using the WinSRFR software," Agricultural Water Management, Elsevier, vol. 276(C).
    16. Batchelor, Charles, 1999. "Improving water use efficiency as part of integrated catchment management," Agricultural Water Management, Elsevier, vol. 40(2-3), pages 249-263, May.
    17. Slamini, Maryam & Sbaa, Mohamed & Arabi, Mourad & Darmous, Ahmed, 2022. "Review on Partial Root-zone Drying irrigation: Impact on crop yield, soil and water pollution," Agricultural Water Management, Elsevier, vol. 271(C).
    18. Seidu, Razak & Drechsel, Pay, 2011. "Analyse cout-efficacite des interventions pour reduire les maladies diarrheiques chez les consommateurs de laitues irriguees avec des eaux usees au Ghana. In French," Book Chapters,, International Water Management Institute.
    19. Karandish, Fatemeh & Šimůnek, Jiří, 2019. "A comparison of the HYDRUS (2D/3D) and SALTMED models to investigate the influence of various water-saving irrigation strategies on the maize water footprint," Agricultural Water Management, Elsevier, vol. 213(C), pages 809-820.
    20. Abdel Gawad, G. & Arslan, A. & Gaihbe, A. & Kadouri, F., 2005. "The effects of saline irrigation water management and salt tolerant tomato varieties on sustainable production of tomato in Syria (1999-2002)," Agricultural Water Management, Elsevier, vol. 78(1-2), pages 39-53, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:213:y:2019:i:c:p:792-802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.