IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v211y2019icp81-88.html
   My bibliography  Save this article

Impacts of nitrogen application timing and cover crop inclusion on subsurface drainage water quality

Author

Listed:
  • Ruffatti, Michael D.
  • Roth, Richard T.
  • Lacey, Corey G.
  • Armstrong, Shalamar D.

Abstract

Significant reductions in nitrogen loading from sub-surface drainage fields of the Upper Mississippi River Basin to the Gulf of Mexico will most likely be achieved from the mass adoption of nutrient loss reduction strategies at a watershed scale. Few studies have quantified the efficacy of cover crops to reduce NO3-N loading in nitrogen fertilizer management systems, where the dominant portion of the N rate is applied in the spring or fall, both of which are common practices in the Upper Mississippi River Basin. In this experiment we quantified the impact of N application timing and cover crop inclusion on NO3-N loss (leaching) from agricultural sub-surface drainage within five nitrogen management scenarios: a zero control, applying the dominant portion of the N rate in the spring, applying the dominant portion of the N rate in the fall, augmenting the a spring and Fall N application system with cover crop. Each of the five nitrogen management scenarios was replicated three times on individually monitored sub-surface drainage plots established in Lexington, IL. During the experiment, a cereal rye (Secale cereal L.) and radish (Raphanus sativus L.) blend was interseeded within both corn (Zea mays L.) and soybean (Glycine max L.). Fertilizer N application timing did not affect cover crop growth or N uptake. The inclusion of cover crop resulted in more consistent and greater NO3-N loss reductions relative to adjusting fertilizer N application timing from fall to spring. Cover crop reduced the flow-weighted NO3-N concentrations by 39% and 38% and the N load by 40% and 47% when added to spring and fall fertilizer N management systems, respectively. Cover crop proved to be effective in reducing NO3-N loss through sub-surface drainage across the spectrum of N fertilizer management systems common to the Upper Mississippi River Basin.

Suggested Citation

  • Ruffatti, Michael D. & Roth, Richard T. & Lacey, Corey G. & Armstrong, Shalamar D., 2019. "Impacts of nitrogen application timing and cover crop inclusion on subsurface drainage water quality," Agricultural Water Management, Elsevier, vol. 211(C), pages 81-88.
  • Handle: RePEc:eee:agiwat:v:211:y:2019:i:c:p:81-88
    DOI: 10.1016/j.agwat.2018.09.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418313738
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.09.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bierman, Peter M. & Rosen, Carl J. & Venterea, Rodney T. & Lamb, John A., 2012. "Survey of nitrogen fertilizer use on corn in Minnesota," Agricultural Systems, Elsevier, vol. 109(C), pages 43-52.
    2. Kaspar, T.C. & Jaynes, D.B. & Parkin, T.B. & Moorman, T.B. & Singer, J.W., 2012. "Effectiveness of oat and rye cover crops in reducing nitrate losses in drainage water," Agricultural Water Management, Elsevier, vol. 110(C), pages 25-33.
    3. Basche, Andrea D. & Kaspar, Thomas C. & Archontoulis, Sotirios V. & Jaynes, Dan B. & Sauer, Thomas J. & Parkin, Timothy B. & Miguez, Fernando E., 2016. "Soil water improvements with the long-term use of a winter rye cover crop," Agricultural Water Management, Elsevier, vol. 172(C), pages 40-50.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongxing Liu & Wendong Zhang & Elena Irwin & Jeffrey Kast & Noel Aloysius & Jay Martin & Margaret Kalcic, 2020. "Best Management Practices and Nutrient Reduction: An Integrated Economic-Hydrologic Model of the Western Lake Erie Basin," Land Economics, University of Wisconsin Press, vol. 96(4), pages 510-530.
    2. Gupta, Rishabh & Bhattarai, Rabin & Coppess, Jonathan W. & Jeong, Hanseok & Ruffatti, Michael & Armstrong, Shalamar D., 2022. "Modeling the impact of winter cover crop on tile drainage and nitrate loss using DSSAT model," Agricultural Water Management, Elsevier, vol. 272(C).
    3. Coppess, Jonathan & Navarro, Christopher & Satheesan, Sandeep Puthanveetil & Naraharisetty, Vara Veera Gowtham & Bhattarai, Rabin & Armstrong, Shalamar & Gupta, Rishabh, . "Introducing the Cover Crop Decision Support Tool," farmdoc daily, University of Illinois at Urbana-Champaign, Department of Agricultural and Consumer Economics, vol. 10(176).
    4. Meilin Ma & Carson Reeling & Megan N Hughes & Shalamar Armstrong & Richard Roth, 2023. "Comparison of conservation instruments under long-run yield uncertainty and farmer risk aversion," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 50(5), pages 1685-1714.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rogovska, Natalia & O’Brien, Peter L. & Malone, Rob & Emmett, Bryan & Kovar, John L. & Jaynes, Dan & Kaspar, Thomas & Moorman, Thomas B. & Kyveryga, Peter, 2023. "Long-term conservation practices reduce nitrate leaching while maintaining yields in tile-drained Midwestern soils," Agricultural Water Management, Elsevier, vol. 288(C).
    2. Robert Malone & Jurgen Garbrecht & Phillip Busteed & Jerry Hatfield & Dennis Todey & Jade Gerlitz & Quanxiao Fang & Matthew Sima & Anna Radke & Liwang Ma & Zhiming Qi & Huaiqing Wu & Dan Jaynes & Thom, 2020. "Drainage N Loads Under Climate Change with Winter Rye Cover Crop in a Northern Mississippi River Basin Corn-Soybean Rotation," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    3. Sawadgo, Wendiam & Plastina, Alejandro, 2021. "Do cost-share programs increase cover crop use? Empirical evidence from Iowa," ISU General Staff Papers 202101010800001084, Iowa State University, Department of Economics.
    4. Marcillo, Guillermo S. & Carlson, Sarah & Filbert, Meghan & Kaspar, Thomas & Plastina, Alejandro & Miguez, Fernando E., 2019. "Maize system impacts of cover crop management decisions: A simulation analysis of rye biomass response to planting populations in Iowa, U.S.A," Agricultural Systems, Elsevier, vol. 176(C).
    5. Malone, R.W. & Kersebaum, K.C. & Kaspar, T.C. & Ma, L. & Jaynes, D.B. & Gillette, K., 2017. "Winter rye as a cover crop reduces nitrate loss to subsurface drainage as simulated by HERMES," Agricultural Water Management, Elsevier, vol. 184(C), pages 156-169.
    6. Rath, S. & Zamora-Re, M. & Graham, W. & Dukes, M. & Kaplan, D., 2021. "Quantifying nitrate leaching to groundwater from a corn-peanut rotation under a variety of irrigation and nutrient management practices in the Suwannee River Basin, Florida," Agricultural Water Management, Elsevier, vol. 246(C).
    7. Wang, Jun & Zhang, Shaohong & Sainju, Upendra M. & Ghimire, Rajan & Zhao, Fazhu, 2021. "A meta-analysis on cover crop impact on soil water storage, succeeding crop yield, and water-use efficiency," Agricultural Water Management, Elsevier, vol. 256(C).
    8. Ji, Yongjie & Rabotyagov, sergey & Valcu-Lisman, Adriana, 2015. "Estimating Adoption of Cover Crops Using Preferences Revealed by a Dynamic Crop Choice Model," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205799, Agricultural and Applied Economics Association.
    9. Du, Zhushan & Feng, Hongli & Arbuckle, J. Gordon, 2024. "Beyond cross-sectional, one-time adoption measures of conservation practices: Understanding temporal adoption patterns using farm-level panel data," 2024 Annual Meeting, July 28-30, New Orleans, LA 344010, Agricultural and Applied Economics Association.
    10. Maaz Gardezi & J. Gordon Arbuckle, 2019. "Spatially Representing Vulnerability to Extreme Rain Events Using Midwestern Farmers’ Objective and Perceived Attributes of Adaptive Capacity," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 17-34, January.
    11. Catherine L. Kling & Yiannis Panagopoulos & Adriana Valcu-Lisman & Philip W. Gassman & Sergey Rabotyagov & Todd Campbell & Mike White & Jeffrey G. Arnold & Raghavan Srinivasan & Manoj Jha & Jeff Richa, 2014. "Land Use Model Integrating Agriculture and the Environment (LUMINATE): Linkages between Agricultural Land Use, Local Water Quality and Hypoxic Concerns in the Gulf of Mexico Basin," Center for Agricultural and Rural Development (CARD) Publications 14-wp546, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    12. Olivia Peters & Samuel I. Haruna, . "Does no-till cover crop influence in situ measured soil water potential and saturated hydraulic conductivity?," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 0.
    13. Sandhya Karki & M. Arlene A. Adviento-Borbe & Joseph H. Massey & Michele L. Reba, 2021. "Assessing Seasonal Methane and Nitrous Oxide Emissions from Furrow-Irrigated Rice with Cover Crops," Agriculture, MDPI, vol. 11(3), pages 1-15, March.
    14. Erin M. Silva & Virginia M. Moore, 2017. "Cover Crops as an Agroecological Practice on Organic Vegetable Farms in Wisconsin, USA," Sustainability, MDPI, vol. 9(1), pages 1-15, January.
    15. Konečná Jana & Karásek Petr & Fučík Petr & Podhrázská Jana & Pochop Michal & Ryšavý Stanislav & Hanák Roman, 2017. "Integration of soil and water conservation measures in an intensively cultivated watershed – a case study of Jihlava river basin (Czech Republic)," European Countryside, Sciendo, vol. 9(1), pages 17-28, March.
    16. Roth, Richard T. & Ruffatti, Michael D. & O'Rourke, Patrick D. & Armstrong, Shalamar D., 2018. "A cost analysis approach to valuing cover crop environmental and nitrogen cycling benefits: A central Illinois on farm case study," Agricultural Systems, Elsevier, vol. 159(C), pages 69-77.
    17. Li, Yizhuo & Tian, Di & Feng, Gary & Yang, Wei & Feng, Liping, 2021. "Climate change and cover crop effects on water use efficiency of a corn-soybean rotation system," Agricultural Water Management, Elsevier, vol. 255(C).
    18. Imene Kerbouai & Dorra Sfayhi & Khaled Sassi & Hatem Cheikh M’hamed & Houda Jenfaoui & Jouhaina Riahi & Slim Arfaoui & Moncef Chouaibi & Hanen Ben Ismail, 2023. "Influence of Conservation Agriculture on Durum Wheat Grain, Dough Texture Profile and Pasta Quality in a Mediterranean Region," Agriculture, MDPI, vol. 13(4), pages 1-16, April.
    19. Flowers, Henry & Lopez, Jose A. & Drake, David & Jones, Curtis, 2023. "An Agronomic and Economic Analysis of Annual Ryegrass Management Practices in North-Texas Soybean Production," 2023 Annual Meeting, February 4-8, 2023, Oklahoma City, Oklahoma 338474, Southern Agricultural Economics Association.
    20. Mohamed Allam & Emanuele Radicetti & Mortadha Ben Hassine & Aftab Jamal & Zainul Abideen & Roberto Mancinelli, 2023. "A Meta-Analysis Approach to Estimate the Effect of Cover Crops on the Grain Yield of Succeeding Cereal Crops within European Cropping Systems," Agriculture, MDPI, vol. 13(9), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:211:y:2019:i:c:p:81-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.