IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v210y2018icp330-339.html
   My bibliography  Save this article

Crop rotation and N application rate affecting the performance of winter wheat under deficit irrigation

Author

Listed:
  • Qin, Wenli
  • Zhang, Xiying
  • Chen, Suying
  • Sun, Hongyong
  • Shao, Liwei

Abstract

Deficit irrigation to winter wheat is gradually adopted in the North China Plain (NCP) for conservation of groundwater resources. N application to winter wheat should be decided based on the irrigation water availability. Under deficit irrigation, yield of winter wheat was also related to the water use characters of its previous crops. Field studies were conducted from 2013 to 2016 at Luancheng station in the NCP to evaluate the addition of soybean to the conventional annual double cropping system (winter wheat-summer maize) and reducing N input on the performance of winter wheat under deficit irrigation. Summer maize was either replaced by soybean or inter-planted with soybean. The subsequent winter wheat was applied with six nitrogen rates (0, 135, 216, 270, 324 and 405 kg/ha) with one irrigation or two irrigation applications. The results showed that the average seasonal water use of single soybean (SS), intercropping of maize and soybean (IMS) and single maize (SM) was 359.1 mm, 336.3 mm and 309.6 mm from 2013 to 2016, respectively. The inclusion of soybean as single or inter-planted crop increased the water use during the summer rainy season, which was related to the increase in leaf area index. As compared with the SM, the soil water stored in the 2 m soil profile at the summer crops harvesting was reduced by 24.7 mm and 94.7 mm in 2014, 15.9 mm and 95.6 mm in 2015, respectively, for the IMS and SS, respectively. Due to the dependent of winter wheat on the stored soil water before sowing, the reduction in pre-season soil water content significantly decreased the yield by 1005.4–1878.0 kg/ha. Yield of winter wheat didn’t respond to the increase in N application when N rate was over 135 kg/ha. The local N application rate at 270 kg/ha could be reduced up to 50% without apparent effects on crop productivity under deficit irrigation scheduling. The results indicated that for diminishing the reduction in yield of winter wheat under limited water supply, its previous crop with less water use in summer season should be selected. Yield of winter wheat could be maintained with half of its normal N application under limited water supply.

Suggested Citation

  • Qin, Wenli & Zhang, Xiying & Chen, Suying & Sun, Hongyong & Shao, Liwei, 2018. "Crop rotation and N application rate affecting the performance of winter wheat under deficit irrigation," Agricultural Water Management, Elsevier, vol. 210(C), pages 330-339.
  • Handle: RePEc:eee:agiwat:v:210:y:2018:i:c:p:330-339
    DOI: 10.1016/j.agwat.2018.08.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418309624
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.08.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gheysari, Mahdi & Sadeghi, Sayed-Hossein & Loescher, Henry W. & Amiri, Samia & Zareian, Mohammad Javad & Majidi, Mohammad M. & Asgarinia, Parvaneh & Payero, Jose O., 2017. "Comparison of deficit irrigation management strategies on root, plant growth and biomass productivity of silage maize," Agricultural Water Management, Elsevier, vol. 182(C), pages 126-138.
    2. Zhang, Xiying & Qin, Wenli & Chen, Suying & Shao, Liwei & Sun, Hongyong, 2017. "Responses of yield and WUE of winter wheat to water stress during the past three decades—A case study in the North China Plain," Agricultural Water Management, Elsevier, vol. 179(C), pages 47-54.
    3. Ben-Asher, Jiftah & Tsuyuki, Itaru & Bravdo, Ben-Ami & Sagih, Moshe, 2006. "Irrigation of grapevines with saline water: I. Leaf area index, stomatal conductance, transpiration and photosynthesis," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 13-21, May.
    4. Alfonso Expósito & Julio Berbel, 2017. "Sustainability Implications of Deficit Irrigation in a Mature Water Economy: A Case Study in Southern Spain," Sustainability, MDPI, vol. 9(7), pages 1-13, June.
    5. Deng, Xi-Ping & Shan, Lun & Zhang, Heping & Turner, Neil C., 2006. "Improving agricultural water use efficiency in arid and semiarid areas of China," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 23-40, February.
    6. Kang, Shaozhong & Gu, Binjie & Du, Taisheng & Zhang, Jianhua, 2003. "Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region," Agricultural Water Management, Elsevier, vol. 59(3), pages 239-254, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Shiquan & Xiong, Jinran & Yang, Boyuan & Yang, Xiaolin & Du, Taisheng & Steenhuis, Tammo S. & Siddique, Kadambot H.M. & Kang, Shaozhong, 2023. "Diversified crop rotations reduce groundwater use and enhance system resilience," Agricultural Water Management, Elsevier, vol. 276(C).
    2. Yan, Zongzheng & Zhang, Xiying & Rashid, Muhammad Adil & Li, Hongjun & Jing, Haichun & Hochman, Zvi, 2020. "Assessment of the sustainability of different cropping systems under three irrigation strategies in the North China Plain under climate change," Agricultural Systems, Elsevier, vol. 178(C).
    3. Zhao, Jiongchao & Wang, Chong & Shi, Xiaoyu & Bo, Xiaozhi & Li, Shuo & Shang, Mengfei & Chen, Fu & Chu, Qingquan, 2021. "Modeling climatically suitable areas for soybean and their shifts across China," Agricultural Systems, Elsevier, vol. 192(C).
    4. Wang, Xiukang & Guo, Tao & Wang, Yi & Xing, Yingying & Wang, Yanfeng & He, Xiaolong, 2020. "Exploring the optimization of water and fertilizer management practices for potato production in the sandy loam soils of Northwest China based on PCA," Agricultural Water Management, Elsevier, vol. 237(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Xiaolin & Jin, Xinnan & Chu, Qingquan & Pacenka, Steven & Steenhuis, Tammo S., 2021. "Impact of climate variation from 1965 to 2016 on cotton water requirements in North China Plain," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Jia, Qianmin & Sun, Lefeng & Ali, Shahzad & Zhang, Yan & Liu, Donghua & Kamran, Muhammad & Zhang, Peng & Jia, Zhikuan & Ren, Xiaolong, 2018. "Effect of planting density and pattern on maize yield and rainwater use efficiency in the Loess Plateau in China," Agricultural Water Management, Elsevier, vol. 202(C), pages 19-32.
    3. Liu, Yi & Li, Shiqing & Chen, Fang & Yang, Shenjiao & Chen, Xinping, 2010. "Soil water dynamics and water use efficiency in spring maize (Zea mays L.) fields subjected to different water management practices on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 97(5), pages 769-775, May.
    4. Muhammad Umair & Tabassum Hussain & Hanbing Jiang & Ayesha Ahmad & Jiawei Yao & Yongqing Qi & Yucui Zhang & Leilei Min & Yanjun Shen, 2019. "Water-Saving Potential of Subsurface Drip Irrigation For Winter Wheat," Sustainability, MDPI, vol. 11(10), pages 1-15, May.
    5. Zeng, Ruiyun & Lin, Xiaomao & Welch, Stephen M. & Yang, Shanshan & Huang, Na & Sassenrath, Gretchen F. & Yao, Fengmei, 2023. "Impact of water deficit and irrigation management on winter wheat yield in China," Agricultural Water Management, Elsevier, vol. 287(C).
    6. Yang, Danni & Li, Sien & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Mao, Xiaomin & Tong, Ling & Hao, Xinmei & Ding, Risheng & Niu, Jun, 2020. "Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    7. Wang, Linlin & Li, Qiang & Coulter, Jeffrey A. & Xie, Junhong & Luo, Zhuzhu & Zhang, Renzhi & Deng, Xiping & Li, Linglin, 2020. "Winter wheat yield and water use efficiency response to organic fertilization in northern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 229(C).
    8. Rashid, Muhammad Adil & Jabloun, Mohamed & Andersen, Mathias Neumann & Zhang, Xiying & Olesen, Jørgen Eivind, 2019. "Climate change is expected to increase yield and water use efficiency of wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 222(C), pages 193-203.
    9. Katerji, Nader & Campi, Pasquale & Mastrorilli, Marcello, 2013. "Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region," Agricultural Water Management, Elsevier, vol. 130(C), pages 14-26.
    10. Zhao, Nana & Liu, Yu & Cai, Jiabing & Paredes, Paula & Rosa, Ricardo D. & Pereira, Luis S., 2013. "Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component," Agricultural Water Management, Elsevier, vol. 117(C), pages 93-105.
    11. Erdem, Yesim & Arin, Levent & Erdem, Tolga & Polat, Serdar & Deveci, Murat & Okursoy, Hakan & Gültas, Hüseyin T., 2010. "Crop water stress index for assessing irrigation scheduling of drip irrigated broccoli (Brassica oleracea L. var. italica)," Agricultural Water Management, Elsevier, vol. 98(1), pages 148-156, December.
    12. Ben-Asher, J. & van Dam, J. & Feddes, R.A. & Jhorar, R.K., 2006. "Irrigation of grapevines with saline water: II. Mathematical simulation of vine growth and yield," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 22-29, May.
    13. Zheng, Jing & Fan, Junliang & Zhang, Fucang & Zhuang, Qianlai, 2021. "Evapotranspiration partitioning and water productivity of rainfed maize under contrasting mulching conditions in Northwest China," Agricultural Water Management, Elsevier, vol. 243(C).
    14. Alexandre Troian & Mário Conill Gomes & Tales Tiecher & Julio Berbel & Carlos Gutiérrez-Martín, 2021. "The Drivers-Pressures-State-Impact-Response Model to Structure Cause−Effect Relationships between Agriculture and Aquatic Ecosystems," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    15. Liang, Jiaping & Shi, Wenjuan & He, Zijian & Pang, Linna & Zhang, Yanchao, 2019. "Effects of poly-γ-glutamic acid on water use efficiency, cotton yield, and fiber quality in the sandy soil of southern Xinjiang, China," Agricultural Water Management, Elsevier, vol. 218(C), pages 48-59.
    16. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    17. Lian, Yanhao & Ali, Shahzad & Zhang, Xudong & Wang, Tianlu & Liu, Qi & Jia, Qianmin & Jia, Zhikuan & Han, Qingfang, 2016. "Nutrient and tillage strategies to increase grain yield and water use efficiency in semi-arid areas," Agricultural Water Management, Elsevier, vol. 178(C), pages 137-147.
    18. Alberto, Ma. Carmelita R. & Quilty, James R. & Buresh, Roland J. & Wassmann, Reiner & Haidar, Sam & Correa, Teodoro Q. & Sandro, Joseph M., 2014. "Actual evapotranspiration and dual crop coefficients for dry-seeded rice and hybrid maize grown with overhead sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 136(C), pages 1-12.
    19. Duan, Chenxiao & Chen, Guangjie & Hu, Yajin & Wu, Shufang & Feng, Hao & Dong, Qin’ge, 2021. "Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions," Agricultural Water Management, Elsevier, vol. 245(C).
    20. Attia, Ahmed & El-Hendawy, Salah & Al-Suhaibani, Nasser & Alotaibi, Majed & Tahir, Muhammad Usman & Kamal, Khaled Y., 2021. "Evaluating deficit irrigation scheduling strategies to improve yield and water productivity of maize in arid environment using simulation," Agricultural Water Management, Elsevier, vol. 249(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:210:y:2018:i:c:p:330-339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.