IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v206y2018icp31-41.html
   My bibliography  Save this article

Yield of and nutrient-water use by maize exposed to moisture stress and K fertilizers in an inceptisol of West Bengal, India

Author

Listed:
  • Bhattacharyya, Kallol
  • Das, Tanmay
  • Ray, Krishnendu
  • Dutta, Sudarshan
  • Majumdar, Kaushik
  • Pari, Arnab
  • Banerjee, Hirak

Abstract

Potassium (K) is important for both qualitative and quantitative traits of maize. However, role of this macronutrient is often being ignored, and is often applied as an optional nutrient, with no proper fertilizer recommendation. Present experiment focused on the role of K fertilization in determining soil K fractions, maize yield, K and water use by maize under different irrigation regimes. Result revealed that K-fertilization significantly improved available soil K, fractions of K (especially non-exchangeable, mineral and total fractions), maize yield, K uptake and water use efficiency. Imposition of moisture stress up to 50% available soil moisture deficit (ASMD) significantly increased all the aforementioned parameters over the no stress situation, while irrigation available at 75% ASMD reduced them significantly. Soil K fractions, under different K fertilizations and irrigation schedules, decreased with the increase in soil depth upto 90 cm. Only exception was non-exchangeable soil K which remained stable across soil depths. The relationship among different K fractions and available soil K was estimated. Available K was observed to have strongest correlation with water soluble and exchangeable K in all possible irrigation regimes. Path analysis studies revealed that water soluble K exerted highest direct effect on changes in maize grain yield and K uptake followed by exchangeable, non-exchangeable and mineral K under irrigation availability at 25 and 50% ASMD. However, exchangeable K exerted highest direct effect on maize grain yield at 75% ASMD.

Suggested Citation

  • Bhattacharyya, Kallol & Das, Tanmay & Ray, Krishnendu & Dutta, Sudarshan & Majumdar, Kaushik & Pari, Arnab & Banerjee, Hirak, 2018. "Yield of and nutrient-water use by maize exposed to moisture stress and K fertilizers in an inceptisol of West Bengal, India," Agricultural Water Management, Elsevier, vol. 206(C), pages 31-41.
  • Handle: RePEc:eee:agiwat:v:206:y:2018:i:c:p:31-41
    DOI: 10.1016/j.agwat.2018.04.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418304979
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.04.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fang, Q. & Ma, L. & Yu, Q. & Ahuja, L.R. & Malone, R.W. & Hoogenboom, G., 2010. "Irrigation strategies to improve the water use efficiency of wheat-maize double cropping systems in North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1165-1174, August.
    2. Moser, Samuel B. & Feil, Boy & Jampatong, Sansern & Stamp, Peter, 2006. "Effects of pre-anthesis drought, nitrogen fertilizer rate, and variety on grain yield, yield components, and harvest index of tropical maize," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 41-58, March.
    3. Zhang, Yongqiang & Kendy, Eloise & Qiang, Yu & Changming, Liu & Yanjun, Shen & Hongyong, Sun, 2004. "Effect of soil water deficit on evapotranspiration, crop yield, and water use efficiency in the North China Plain," Agricultural Water Management, Elsevier, vol. 64(2), pages 107-122, January.
    4. Rivera-Hernández, B. & Carrillo-Ávila, E. & Obrador-Olán, J.J. & Juárez-López, J.F. & Aceves-Navarro, L.A., 2010. "Morphological quality of sweet corn (Zea mays L.) ears as response to soil moisture tension and phosphate fertilization in Campeche, Mexico," Agricultural Water Management, Elsevier, vol. 97(9), pages 1365-1374, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qu, Zhaoming & Qi, Xingchao & Liu, Yanli & Liu, Kexin & Li, Chengliang, 2020. "Interactive effect of irrigation and polymer-coated potassium chloride on tomato production in a greenhouse," Agricultural Water Management, Elsevier, vol. 235(C).
    2. Qu, Zhaoming & Chen, Qi & Feng, Haojie & Hao, Miao & Niu, Guoliang & Liu, Yanli & Li, Chengliang, 2022. "Interactive effect of irrigation and blend ratio of controlled release potassium chloride and potassium chloride on greenhouse tomato production in the Yellow River Basin of China," Agricultural Water Management, Elsevier, vol. 261(C).
    3. Xiao, Chao & Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Li, Yi & Sun, Shikun & Pulatov, Alim, 2021. "Optimizing irrigation amount and fertilization rate of drip-fertigated spring maize in northwest China based on multi-level fuzzy comprehensive evaluation model," Agricultural Water Management, Elsevier, vol. 257(C).
    4. Li, Xuechun & Chen, Dan & Cao, Xinchun & Luo, Zhaohui & Webber, Michael, 2020. "Assessing the components of, and factors influencing, paddy rice water footprint in China," Agricultural Water Management, Elsevier, vol. 229(C).
    5. Nasser Al-Suhaibani & Mostafa Selim & Ali Alderfasi & Salah El-Hendawy, 2021. "Integrated Application of Composted Agricultural Wastes, Chemical Fertilizers and Biofertilizers as an Avenue to Promote Growth, Yield and Quality of Maize in an Arid Agro-Ecosystem," Sustainability, MDPI, vol. 13(13), pages 1-26, July.
    6. Allakonon, M. Gloriose B. & Zakari, Sissou & Tovihoudji, Pierre G. & Fatondji, A. Sènami & Akponikpè, P.B. Irénikatché, 2022. "Grain yield, actual evapotranspiration and water productivity responses of maize crop to deficit irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 270(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Nana & Wu, Bingfang & Perry, Chris & Zeng, Hongwei, 2015. "Assessing potential water savings in agriculture on the Hai Basin plain, China," Agricultural Water Management, Elsevier, vol. 154(C), pages 11-19.
    2. Iqbal, M. Anjum & Shen, Yanjun & Stricevic, Ruzica & Pei, Hongwei & Sun, Hongyoung & Amiri, Ebrahim & Penas, Angel & del Rio, Sara, 2014. "Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation," Agricultural Water Management, Elsevier, vol. 135(C), pages 61-72.
    3. Fang, Q.X. & Ma, L. & Green, T.R. & Yu, Q. & Wang, T.D. & Ahuja, L.R., 2010. "Water resources and water use efficiency in the North China Plain: Current status and agronomic management options," Agricultural Water Management, Elsevier, vol. 97(8), pages 1102-1116, August.
    4. Sun, Qinping & Kröbel, Roland & Müller, Torsten & Römheld, Volker & Cui, Zhenling & Zhang, Fusuo & Chen, Xinping, 2011. "Optimization of yield and water-use of different cropping systems for sustainable groundwater use in North China Plain," Agricultural Water Management, Elsevier, vol. 98(5), pages 808-814, March.
    5. Li, Zhoujing & Hu, Kelin & Li, Baoguo & He, Mingrong & Zhang, Jiwang, 2015. "Evaluation of water and nitrogen use efficiencies in a double cropping system under different integrated management practices based on a model approach," Agricultural Water Management, Elsevier, vol. 159(C), pages 19-34.
    6. Zhong, Honglin & Sun, Laixiang & Fischer, Günther & Tian, Zhan & van Velthuizen, Harrij & Liang, Zhuoran, 2017. "Mission Impossible? Maintaining regional grain production level and recovering local groundwater table by cropping system adaptation across the North China Plain," Agricultural Water Management, Elsevier, vol. 193(C), pages 1-12.
    7. de Azevedo, Pedro Vieira & de Sousa, Inaja Francisco & da Silva, Bernardo Barbosa & da Silva, Vicente de Paulo Rodrigues, 2006. "Water-use efficiency of dwarf-green coconut (Cocos nucifera L.) orchards in northeast Brazil," Agricultural Water Management, Elsevier, vol. 84(3), pages 259-264, August.
    8. Lu, Jie & Bai, Zhaohai & Velthof, Gerard L. & Wu, Zhiguo & Chadwick, David & Ma, Lin, 2019. "Accumulation and leaching of nitrate in soils in wheat-maize production in China," Agricultural Water Management, Elsevier, vol. 212(C), pages 407-415.
    9. Chen, Qi & Qu, Zhaoming & Ma, Guohua & Wang, Wenjing & Dai, Jiaying & Zhang, Min & Wei, Zhanbo & Liu, Zhiguang, 2022. "Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions," Agricultural Water Management, Elsevier, vol. 263(C).
    10. Gholami Zali, Ali & Ehsanzadeh, Parviz, 2018. "Exogenously applied proline as a tool to enhance water use efficiency: Case of fennel," Agricultural Water Management, Elsevier, vol. 197(C), pages 138-146.
    11. Zhao, Nana & Liu, Yu & Cai, Jiabing & Paredes, Paula & Rosa, Ricardo D. & Pereira, Luis S., 2013. "Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component," Agricultural Water Management, Elsevier, vol. 117(C), pages 93-105.
    12. Krešo Pandžić & Tanja Likso & Ivan Pejić & Hrvoje Šarčević & Marija Pecina & Ivana Šestak & Davor Tomšić & Nataša Strelec Mahović, 2022. "Application of the self-calibrated palmer drought severity index and standardized precipitation index for estimation of drought impact on maize grain yield in Pannonian part of Croatia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1237-1262, September.
    13. Kukal, M.S. & Irmak, S., 2020. "Impact of irrigation on interannual variability in United States agricultural productivity," Agricultural Water Management, Elsevier, vol. 234(C).
    14. Jeong, Hanseok & Pittelkow, Cameron M. & Bhattarai, Rabin, 2019. "Simulated responses of tile-drained agricultural systems to recent changes in ambient atmospheric gradients," Agricultural Systems, Elsevier, vol. 168(C), pages 48-55.
    15. Robel Admasu & Abraham W Michael & Tilahun Hordofa, 2019. "Senior Irrigation Researcher, Melkassa Agricultural Research Center, Ethiopia," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 16(4), pages 83-87, January.
    16. Bhattarai, Bishwoyog & Singh, Sukhbir & Angadi, Sangamesh V. & Begna, Sultan & Saini, Rupinder & Auld, Dick, 2020. "Spring safflower water use patterns in response to preseason and in-season irrigation applications," Agricultural Water Management, Elsevier, vol. 228(C).
    17. Yuan, Chengfu & Feng, Shaoyuan & Huo, Zailin & Ji, Quanyi, 2019. "Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 212(C), pages 424-432.
    18. Walaa El-Nashar & Ahmed Elyamany, 2023. "Adapting Irrigation Strategies to Mitigate Climate Change Impacts: A Value Engineering Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2369-2386, May.
    19. Mati, Rastislav & Kotorová, Dana & Gombos, Milan & Kandra, Branislav, 2011. "Development of evapotranspiration and water supply of clay-loamy soil on the East Slovak Lowland," Agricultural Water Management, Elsevier, vol. 98(7), pages 1133-1140, May.
    20. Karam, Fadi & Kabalan, Rabih & Breidi, Jolle & Rouphael, Youssef & Oweis, Theib, 2009. "Yield and water-production functions of two durum wheat cultivars grown under different irrigation and nitrogen regimes," Agricultural Water Management, Elsevier, vol. 96(4), pages 603-615, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:206:y:2018:i:c:p:31-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.