IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v203y2018icp1-8.html
   My bibliography  Save this article

Investigating “net” provenance, N source, transformation and fate within hydrologically isolated grassland plots

Author

Listed:
  • Clagnan, E.
  • Thornton, S.F.
  • Rolfe, S.A.
  • Wells, N.S.
  • Knoeller, K.
  • Fenton, O.

Abstract

Agricultural landscapes contain many different soil types with heterogeneous nitrogen (N) attenuation capacity. Typically, a zone of contribution (ZOC) surrounding a borehole is used to interpret subsurface hydro-biogeochemical functional capacity. This presents a “net” interpretation of source and attenuation within these calculated areas. Herein, we use the concept of ZOC commonly used for borehole screen intervals but for an end-of-pipe location within four hydrologically isolated plots. Water samples from end-of-pipe and piezometer locations are examined for nitrogen (N), biogeochemical, dissolved gas and isotopic viewpoints to elucidate multi-layered “net” water provenance, N source, transformations and fate. Results showed a nitrate (NO3−-N) plume migrating in shallow groundwater (between 0.39 and 8.07 mg N/L), with low concentrations in the shallow artificial drainage system (below 3.22 mg N/L). Water provenance data showed distinct signatures of: precipitation and deep groundwater at 3–4 m below ground level (bgl) and water entering, migrating and discharging at the end of pipe location. The latter signature was caused by enrichment of δ18O-H2O during migration. This means there was disconnectivity on site with no interaction between water migrating through the drainage pipe at 1 m and deeper groundwater migrating at 3–4 m depth. The analysis of NO3−-N concentration and its isotopic signature (δ15N-NO3− and δ18O-NO3) identified further connections between screen interval depths and an up-gradient organic point source with elevated NO3−-N migrating at this depth and different transformation processes occurring at different depths. Temporally NO3−-N concentrations at this depth have decreased over time. Fenton et al. documented an average of 7.5 (±4.5) mg N/L whereas Ibrahim et al. documented an average of 6.8 (±3.7) mg N/L at this depth. The point source was removed in 2006 and NO3−-N concentration in the present study have further reduced to an average of 3.9 (±2.8) mg N/L. End-of-pipe data at 1 m bgl highlighted connectivity with the overlying plot and showed different water attenuation functionality than the deeper system. End-of-pipe locations clustered together along the denitrification line. This highlighted a consistency of signals across the four plots in terms of what occurs in the soil profile above the drain installation depth of 1 m. At 3–4 m bgl however, samples varied spatially showing inconsistency between the end-of-pipe locations and plots indicating the occurrence of different processes.

Suggested Citation

  • Clagnan, E. & Thornton, S.F. & Rolfe, S.A. & Wells, N.S. & Knoeller, K. & Fenton, O., 2018. "Investigating “net” provenance, N source, transformation and fate within hydrologically isolated grassland plots," Agricultural Water Management, Elsevier, vol. 203(C), pages 1-8.
  • Handle: RePEc:eee:agiwat:v:203:y:2018:i:c:p:1-8
    DOI: 10.1016/j.agwat.2018.02.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418301264
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.02.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Coyle, Cait & Creamer, Rachel E. & Schulte, Rogier P.O. & O'Sullivan, Lilian & Jordan, Phil, 2016. "A Functional Land Management conceptual framework under soil drainage and land use scenarios," Environmental Science & Policy, Elsevier, vol. 56(C), pages 39-48.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carol Smith & Sadeepa Jayathunga & Pablo Gregorini & Fabiellen C. Pereira & Wendy McWilliam, 2022. "Using Soil Sustainability and Resilience Concepts to Support Future Land Management Practice: A Case Study of Mt Grand Station, Hāwea, New Zealand," Sustainability, MDPI, vol. 14(3), pages 1-19, February.
    2. Rui Zhao & Kening Wu, 2021. "Soil Health Evaluation of Farmland Based on Functional Soil Management—A Case Study of Yixing City, Jiangsu Province, China," Agriculture, MDPI, vol. 11(7), pages 1-27, June.
    3. Rui Zhao & Junying Li & Kening Wu & Long Kang, 2021. "Cultivated Land Use Zoning Based on Soil Function Evaluation from the Perspective of Black Soil Protection," Land, MDPI, vol. 10(6), pages 1-29, June.
    4. Vanesa Zorrilla-Muñoz & Marc Petz & María Silveria Agulló-Tomás, 2021. "GARCH model to estimate the impact of agricultural greenhouse gas emissions per sociodemographic factors and CAP in Spain," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4675-4697, March.
    5. Tianyi Cai & Xinhuan Zhang & Fuqiang Xia & Danni Lu, 2022. "Function Evolution of Oasis Cultivated Land and Its Trade-Off and Synergy Relationship in Xinjiang, China," Land, MDPI, vol. 11(9), pages 1-20, August.
    6. Sijing Ye & Changqing Song & Yakov Kuzyakov & Feng Cheng & Xiangbin Kong & Zhe Feng & Peichao Gao, 2022. "Preface: Arable Land Quality: Observation, Estimation, Optimization, and Application," Land, MDPI, vol. 11(6), pages 1-5, June.
    7. Yongzhong Tan & Hang Chen & Kuan Lian & Zhenning Yu, 2020. "Comprehensive Evaluation of Cultivated Land Quality at County Scale: A Case Study of Shengzhou, Zhejiang Province, China," IJERPH, MDPI, vol. 17(4), pages 1-15, February.
    8. Dirk Vrebos & Francesca Bampa & Rachel E. Creamer & Ciro Gardi & Bhim Bahadur Ghaley & Arwyn Jones & Michiel Rutgers & Taru Sandén & Jan Staes & Patrick Meire, 2017. "The Impact of Policy Instruments on Soil Multifunctionality in the European Union," Sustainability, MDPI, vol. 9(3), pages 1-18, March.
    9. Chiara Piccini & Roberta Farina & Claudia Di Bene & Silvia Vanino & Rosario Napoli, 2023. "Modeling Soil Health Indicators to Assess the Effectiveness of Sustainable Soil Management on Mediterranean Arable Land," Land, MDPI, vol. 12(11), pages 1-17, October.
    10. Ye, Sijing & Song, Changqing & Shen, Shi & Gao, Peichao & Cheng, Changxiu & Cheng, Feng & Wan, Changjun & Zhu, Dehai, 2020. "Spatial pattern of arable land-use intensity in China," Land Use Policy, Elsevier, vol. 99(C).
    11. Liu, Chenyu & Song, Changqing & Ye, Sijing & Cheng, Feng & Zhang, Leina & Li, Chao, 2023. "Estimate provincial-level effectiveness of the arable land requisition-compensation balance policy in mainland China in the last 20 years," Land Use Policy, Elsevier, vol. 131(C).
    12. Fei Xu & Yaping Shao & Baogen Xu & Huan Li & Xuefeng Xie & Yan Xu & Lijie Pu, 2023. "Evaluation and Zoning of Cultivated Land Quality Based on a Space–Function–Environment," Land, MDPI, vol. 12(1), pages 1-20, January.
    13. Bhim Bahadur Ghaley & Teodor Rusu & Taru Sandén & Heide Spiegel & Cristina Menta & Giovanna Visioli & Lilian O’Sullivan & Isabelle Trinsoutrot Gattin & Antonio Delgado & Mark A. Liebig & Dirk Vrebos &, 2018. "Assessment of Benefits of Conservation Agriculture on Soil Functions in Arable Production Systems in Europe," Sustainability, MDPI, vol. 10(3), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:203:y:2018:i:c:p:1-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.