IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v186y2017icp139-146.html
   My bibliography  Save this article

Effects of two slow-release nitrogen fertilizers and irrigation on yield, quality, and water-fertilizer productivity of greenhouse tomato

Author

Listed:
  • Li, Yanmei
  • Sun, Yanxin
  • Liao, Shangqiang
  • Zou, Guoyuan
  • Zhao, Tongke
  • Chen, Yanhua
  • Yang, Jungang
  • Zhang, Lin

Abstract

Technical research on efficient water and nitrogen use is crucial for sustainable agricultural development. A field experiment was conducted to investigate the combined effects of two slow-release nitrogen fertilizers (polymer-coated urea (PU) and carbon-based urea (CU)) and two different irrigation water levels (conventional irrigation, CI; 90% of conventional irrigation, RI) on tomato yield, quality, and water-fertilizer productivity. Tomato yield and irrigation water productivity improved when nitrogen fertilizer was applied. Compared with U application, CU application increased tomato fruit diameter, volume, single-fruit weight, yield, and water-fertilizer productivity, therefore increasing yield by 4600kgha−1 and net income from tomato cultivation by 6313yuanha−1. Treatment with the two slow-release nitrogen fertilizers increased soluble sugar and lycopene contents and reduced nitrate content in fruits. Compared with U treatment, PU and CU treatments decreased total nitrate nitrogen residue in the 0–100cm soil layer. Compared with CI, RI significantly reduced tomato yield and net incomes under PU treatment, whereas RI did not significantly reduce tomato yield and net income under CU treatment. RI increased fruit Vc (vitamin C) and lycopene contents. Results of the study indicated that polymer-coated slow-release fertilizers may have great potential for widespread use because they improved tomato fruit quality while reducing the environmental risks caused by soil nitrogen. In addition, carbon-based, slow-release nitrogen fertilizers promise to improve fruit quality, yield, water-fertilizer productivity, and benefits associated with tomato cultivation. These fertilizers also reduce environmental risks caused by soil nitrogen and help reduce irrigation water consumption while sustaining normal tomato growth and fruit yield, making their promotion extremely beneficial.

Suggested Citation

  • Li, Yanmei & Sun, Yanxin & Liao, Shangqiang & Zou, Guoyuan & Zhao, Tongke & Chen, Yanhua & Yang, Jungang & Zhang, Lin, 2017. "Effects of two slow-release nitrogen fertilizers and irrigation on yield, quality, and water-fertilizer productivity of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 186(C), pages 139-146.
  • Handle: RePEc:eee:agiwat:v:186:y:2017:i:c:p:139-146
    DOI: 10.1016/j.agwat.2017.02.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377417300471
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2017.02.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Chenxia & Gu, Feng & Chen, Jinliang & Yang, Hui & Jiang, Jingjing & Du, Taisheng & Zhang, Jianhua, 2015. "Assessing the response of yield and comprehensive fruit quality of tomato grown in greenhouse to deficit irrigation and nitrogen application strategies," Agricultural Water Management, Elsevier, vol. 161(C), pages 9-19.
    2. Jensen, Christian R. & Battilani, Adriano & Plauborg, Finn & Psarras, Georgios & Chartzoulakis, Kostas & Janowiak, Franciszek & Stikic, Radmila & Jovanovic, Zorica & Li, Guitong & Qi, Xuebin & Liu, Fu, 2010. "Deficit irrigation based on drought tolerance and root signalling in potatoes and tomatoes," Agricultural Water Management, Elsevier, vol. 98(3), pages 403-413, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qu, Zhaoming & Qi, Xingchao & Liu, Yanli & Liu, Kexin & Li, Chengliang, 2020. "Interactive effect of irrigation and polymer-coated potassium chloride on tomato production in a greenhouse," Agricultural Water Management, Elsevier, vol. 235(C).
    2. Li, Huanhuan & Liu, Hao & Gong, Xuewen & Li, Shuang & Pang, Jie & Chen, Zhifang & Sun, Jingsheng, 2021. "Optimizing irrigation and nitrogen management strategy to trade off yield, crop water productivity, nitrogen use efficiency and fruit quality of greenhouse grown tomato," Agricultural Water Management, Elsevier, vol. 245(C).
    3. Qu, Zhaoming & Chen, Qi & Feng, Haojie & Hao, Miao & Niu, Guoliang & Liu, Yanli & Li, Chengliang, 2022. "Interactive effect of irrigation and blend ratio of controlled release potassium chloride and potassium chloride on greenhouse tomato production in the Yellow River Basin of China," Agricultural Water Management, Elsevier, vol. 261(C).
    4. Lu Chen & Qincheng Chen & Pinhua Rao & Lili Yan & Alghashm Shakib & Guoqing Shen, 2018. "Formulating and Optimizing a Novel Biochar-Based Fertilizer for Simultaneous Slow-Release of Nitrogen and Immobilization of Cadmium," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    5. Chen, Rui & Chang, Hongda & Wang, Zhenhua & Lin, Haixia, 2023. "Determining organic-inorganic fertilizer application threshold to maximize the yield and quality of drip-irrigated grapes in an extremely arid area of Xinjiang, China," Agricultural Water Management, Elsevier, vol. 276(C).
    6. Wu, You & Si, Wei & Yan, Shicheng & Wu, Lifeng & Zhao, Wenju & Zhang, Jiale & Zhang, Fucang & Fan, Junliang, 2023. "Water consumption, soil nitrate-nitrogen residue and fruit yield of drip-irrigated greenhouse tomato under various irrigation levels and fertilization practices," Agricultural Water Management, Elsevier, vol. 277(C).
    7. Du, Ya-Dan & Niu, Wen-Quan & Gu, Xiao-Bo & Zhang, Qian & Cui, Bing-Jing, 2018. "Water- and nitrogen-saving potentials in tomato production: A meta-analysis," Agricultural Water Management, Elsevier, vol. 210(C), pages 296-303.
    8. Feng Qu & Jingjing Jiang & Jiwen Xu & Tao Liu & Xiaohui Hu, 2019. "Drip irrigation and fertilization improve yield, uptake of nitrogen, and water-nitrogen use efficiency in cucumbers grown in substrate bags," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 65(6), pages 328-335.
    9. Yasmen Heiba & Mahmoud Nasr & Manabu Fujii & Abdallah E. Mohamed & Mona G. Ibrahim, 2024. "Improving irrigation schemes using sustainable development goals (SDGs)-related indicators: a case study of tomato production in pot-scale experimentation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 17721-17747, July.
    10. Wu, You & Yan, Shicheng & Fan, Junliang & Zhang, Fucang & Zhao, Wenju & Zheng, Jing & Guo, Jinjin & Xiang, Youzhen & Wu, Lifeng, 2022. "Combined effects of irrigation level and fertilization practice on yield, economic benefit and water-nitrogen use efficiency of drip-irrigated greenhouse tomato," Agricultural Water Management, Elsevier, vol. 262(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Xin & Bornø, Marie Louise & Wei, Zhenhua & Liu, Fulai, 2021. "Combined effect of partial root drying and elevated atmospheric CO2 on the physiology and fruit quality of two genotypes of tomato plants with contrasting endogenous ABA levels," Agricultural Water Management, Elsevier, vol. 254(C).
    2. Li, Huanhuan & Liu, Hao & Gong, Xuewen & Li, Shuang & Pang, Jie & Chen, Zhifang & Sun, Jingsheng, 2021. "Optimizing irrigation and nitrogen management strategy to trade off yield, crop water productivity, nitrogen use efficiency and fruit quality of greenhouse grown tomato," Agricultural Water Management, Elsevier, vol. 245(C).
    3. Rasool, Ghulam & Guo, Xiangping & Wang, Zhenchang & Ali, Muhammad Usman & Chen, Sheng & Zhang, Shuxuan & Wu, Qijin & Ullah, Muhammad Saif, 2020. "Coupling fertigation and buried straw layer improves fertilizer use efficiency, fruit yield, and quality of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 239(C).
    4. Yang, Hui & Du, Taisheng & Qiu, Rangjian & Chen, Jinliang & Wang, Feng & Li, Yang & Wang, Chenxia & Gao, Lihong & Kang, Shaozhong, 2017. "Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 193-204.
    5. Koffi Djaman & Suat Irmak & Komlan Koudahe & Samuel Allen, 2021. "Irrigation Management in Potato ( Solanum tuberosum L.) Production: A Review," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    6. Qu, Zhaoming & Chen, Qi & Feng, Haojie & Hao, Miao & Niu, Guoliang & Liu, Yanli & Li, Chengliang, 2022. "Interactive effect of irrigation and blend ratio of controlled release potassium chloride and potassium chloride on greenhouse tomato production in the Yellow River Basin of China," Agricultural Water Management, Elsevier, vol. 261(C).
    7. Du, Shaoqing & Kang, Shaozhong & Li, Fusheng & Du, Taisheng, 2017. "Water use efficiency is improved by alternate partial root-zone irrigation of apple in arid northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 184-192.
    8. Ørum, Jens Erik & Boesen, Mads Vejlby & Jovanovic, Zorica & Pedersen, Søren Marcus, 2010. "Farmers' incentives to save water with new irrigation systems and water taxation--A case study of Serbian potato production," Agricultural Water Management, Elsevier, vol. 98(3), pages 465-471, December.
    9. Ma, Shou-Chen & Duan, Ai-Wang & Wang, Rui & Guan, Zhong-Mei & Yang, Shen-Jiao & Ma, Shou-Tian & Shao, Yun, 2015. "Root-sourced signal and photosynthetic traits, dry matter accumulation and remobilization, and yield stability in winter wheat as affected by regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 148(C), pages 123-129.
    10. Qu, Zhaoming & Qi, Xingchao & Liu, Yanli & Liu, Kexin & Li, Chengliang, 2020. "Interactive effect of irrigation and polymer-coated potassium chloride on tomato production in a greenhouse," Agricultural Water Management, Elsevier, vol. 235(C).
    11. Xufeng Li & Juanjuan Ma & Lijian Zheng & Jinping Chen & Xihuan Sun & Xianghong Guo, 2022. "Optimization of the Regulated Deficit Irrigation Strategy for Greenhouse Tomato Based on the Fuzzy Borda Model," Agriculture, MDPI, vol. 12(3), pages 1-16, February.
    12. Shu, Liang-Zuo & Liu, Rui & Min, Wei & Wang, Yao-sheng & Hong-mei, Yu & Zhu, Peng-fei & Zhu, Ji-rong, 2020. "Regulation of soil water threshold on tomato plant growth and fruit quality under alternate partial root-zone drip irrigation," Agricultural Water Management, Elsevier, vol. 238(C).
    13. Wang, Yaosheng & Janz, Baldur & Engedal, Tine & Neergaard, Andreas de, 2017. "Effect of irrigation regimes and nitrogen rates on water use efficiency and nitrogen uptake in maize," Agricultural Water Management, Elsevier, vol. 179(C), pages 271-276.
    14. Wang, Jiaxin & He, Xinlin & Gong, Ping & Heng, Tong & Zhao, Danqi & Wang, Chunxia & Chen, Quan & Wei, Jie & Lin, Ping & Yang, Guang, 2024. "Response of fragrant pear quality and water productivity to lateral depth and irrigation amount," Agricultural Water Management, Elsevier, vol. 292(C).
    15. Cary, L. & Surdyk, N. & Psarras, G. & Kasapakis, I. & Chartzoulakis, K. & Sandei, L. & Guerrot, C. & Pettenati, M. & Kloppmann, W., 2015. "Short-term assessment of the dynamics of elements in wastewater irrigated Mediterranean soil and tomato fruits through sequential dissolution and lead isotopic signatures," Agricultural Water Management, Elsevier, vol. 155(C), pages 87-99.
    16. Wang, Xuechun & Samo, Naseem & Wang, Mengran & Qadir, Muslim & Yang, Guotao & Hu, Yungao & Ali, Kawsar, 2019. "Dynamic changing of soil water in artificial ryegrass land in the hilly regions of Sichuan Basin area," Agricultural Water Management, Elsevier, vol. 221(C), pages 99-108.
    17. Guo, Lijie & Cao, Hongxia & Helgason, Warren D. & Yang, Hui & Wu, Xuanyi & Li, Hongzheng, 2022. "Effect of drip-line layout and irrigation amount on yield, irrigation water use efficiency, and quality of short-season tomato in Northwest China," Agricultural Water Management, Elsevier, vol. 270(C).
    18. Davies, Michael J. & Harrison-Murray, Richard & Atkinson, Christopher J. & Grant, Olga M., 2016. "Application of deficit irrigation to container-grown hardy ornamental nursery stock via overhead irrigation, compared to drip irrigation," Agricultural Water Management, Elsevier, vol. 163(C), pages 244-254.
    19. Sun, Lei & Li, Bo & Yao, Mingze & Niu, Dongshuang & Gao, Manman & Mao, Lizhen & Xu, Zhanyang & Wang, Tieliang & Wang, Jingkuan, 2023. "Optimising water and nitrogen management for greenhouse tomatoes in Northeast China using EWM−TOPSIS−AISM model," Agricultural Water Management, Elsevier, vol. 290(C).
    20. Zhou, Huiping & Chen, Jinliang & Wang, Feng & Li, Xiaojuan & Génard, Michel & Kang, Shaozhong, 2020. "An integrated irrigation strategy for water-saving and quality-improving of cash crops: Theory and practice in China," Agricultural Water Management, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:186:y:2017:i:c:p:139-146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.