IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v178y2016icp248-257.html
   My bibliography  Save this article

Natural and anthropogenic controls on the frequency of preferential flow occurrence in a wastewater spray irrigation field

Author

Listed:
  • Hopkins, Isaac
  • Gall, Heather
  • Lin, Henry

Abstract

To quantify the frequency of preferential flow (PF) occurrence and its controls, and to examine the interactions of soils and irrigation on water flow dynamics, soil moisture was monitored at six depths every two minutes at four sites in a wastewater spray irrigation field from 2009 to 2011. Two irrigated sites – one cropped and another forested – were compared with two corresponding non-irrigated sites. Activation of preferential flow pathways was determined from the sequences of soil moisture responses at various depths for a total of 633 water input events, including 82 irrigation events. The results showed that the overall averaged frequencies of PF at the non-irrigated sites were 24.9% at the cropped site and 24.7% at the forested site. By contrast, the averaged frequencies at the irrigated sites were 47.1% at the cropped site and 45.0% at the forested site. The temporal stability of PF frequency was evaluated, showing that the overall frequency of PF stabilized after 70 events at non-irrigated sites, while the irrigated sites took as many as 105 events (24 of which were irrigations). Associations between 20 possible controls related to water input, moisture response, and season were quantified using the Student’s t-test between each parameter and PF detection. The most influential factors were water inputs, especially the total input and peak input intensity. Antecedent soil moisture and response slope (maximum 2-min increase in moisture content during the response) were also significant in some but not all cases. Soil horizonation influenced soil water storage and dynamics by restricting flow and causing perched water tables. Irrigated sites experienced saturated conditions for as much as 38% of the monitoring time at some depths, compared to a maximum of 3% at non-irrigated sites. Preferential flow was not only more likely to occur during irrigation events, but also during natural events at the irrigated sites, suggesting that the irrigated soils have physically adapted to accommodate large volumes of water, after decades of spray irrigation. The results of this study have implications for understanding hydrology and contaminant fate in anthropogenically-altered landscapes as well as implementing sustainable management practices.

Suggested Citation

  • Hopkins, Isaac & Gall, Heather & Lin, Henry, 2016. "Natural and anthropogenic controls on the frequency of preferential flow occurrence in a wastewater spray irrigation field," Agricultural Water Management, Elsevier, vol. 178(C), pages 248-257.
  • Handle: RePEc:eee:agiwat:v:178:y:2016:i:c:p:248-257
    DOI: 10.1016/j.agwat.2016.09.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377416303626
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.09.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pereira, Luis Santos & Oweis, Theib & Zairi, Abdelaziz, 2002. "Irrigation management under water scarcity," Agricultural Water Management, Elsevier, vol. 57(3), pages 175-206, December.
    2. Toze, Simon, 2006. "Reuse of effluent water--benefits and risks," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 147-159, February.
    3. Bouma, J., 1981. "Soil morphology and preferential flow along macropores," Agricultural Water Management, Elsevier, vol. 3(4), pages 235-250, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heidarpour, M. & Mostafazadeh-Fard, B. & Abedi Koupai, J. & Malekian, R., 2007. "The effects of treated wastewater on soil chemical properties using subsurface and surface irrigation methods," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 87-94, May.
    2. Garcia, X. & Pargament, D., 2015. "Reusing wastewater to cope with water scarcity: Economic, social and environmental considerations for decision-making," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 154-166.
    3. García-Orenes, F. & Caravaca, F. & Morugán-Coronado, A. & Roldán, A., 2015. "Prolonged irrigation with municipal wastewater promotes a persistent and active soil microbial community in a semiarid agroecosystem," Agricultural Water Management, Elsevier, vol. 149(C), pages 115-122.
    4. Andarzian, B. & Bannayan, M. & Steduto, P. & Mazraeh, H. & Barati, M.E. & Barati, M.A. & Rahnama, A., 2011. "Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran," Agricultural Water Management, Elsevier, vol. 100(1), pages 1-8.
    5. Garg, N.K. & Dadhich, Sushmita M., 2014. "Integrated non-linear model for optimal cropping pattern and irrigation scheduling under deficit irrigation," Agricultural Water Management, Elsevier, vol. 140(C), pages 1-13.
    6. Patanè, C. & Cosentino, S.L., 2010. "Effects of soil water deficit on yield and quality of processing tomato under a Mediterranean climate," Agricultural Water Management, Elsevier, vol. 97(1), pages 131-138, January.
    7. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    8. Abd El-Wahed, M.H. & Ali, E.A., 2013. "Effect of irrigation systems, amounts of irrigation water and mulching on corn yield, water use efficiency and net profit," Agricultural Water Management, Elsevier, vol. 120(C), pages 64-71.
    9. Pedras, C.M.G. & Pereira, L.S. & Gonalves, J.M., 2009. "MIRRIG: A decision support system for design and evaluation of microirrigation systems," Agricultural Water Management, Elsevier, vol. 96(4), pages 691-701, April.
    10. Giorgio Baiamonte & Mario Minacapilli & Giuseppina Crescimanno, 2020. "Effects of Biochar on Irrigation Management and Water Use Efficiency for Three Different Crops in a Desert Sandy Soil," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    11. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    12. Sandhu, O.S. & Gupta, R.K. & Thind, H.S. & Jat, M.L. & Sidhu, H.S. & Yadvinder-Singh,, 2019. "Drip irrigation and nitrogen management for improving crop yields, nitrogen use efficiency and water productivity of maize-wheat system on permanent beds in north-west India," Agricultural Water Management, Elsevier, vol. 219(C), pages 19-26.
    13. Cunha, Angélica Carvalho & Filho, Luís Roberto Almeida Gabriel & Tanaka, Adriana Aki & Goes, Bruno Cesar & Putti, Fernando Ferrari, 2021. "Influence Of The Estimated Global Solar Radiation On The Reference Evapotranspiration Obtained Through The Penman-Monteith Fao 56 Method," Agricultural Water Management, Elsevier, vol. 243(C).
    14. Zhang, Dongmei & Guo, Ping, 2016. "Integrated agriculture water management optimization model for water saving potential analysis," Agricultural Water Management, Elsevier, vol. 170(C), pages 5-19.
    15. Calzadilla, Alvaro & Rehdanz, Katrin & Tol, Richard S.J., 2008. "Water scarcity and the impact of improved irrigation management: A CGE analysis," Conference papers 331788, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    16. Nannan Wang & Tibin Zhang, 2024. "Soil pore structure and its research methods: A review," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 19(1), pages 1-24.
    17. Geerts, S. & Raes, D. & Garcia, M., 2010. "Using AquaCrop to derive deficit irrigation schedules," Agricultural Water Management, Elsevier, vol. 98(1), pages 213-216, December.
    18. Trevor W. Crosby & Yi Wang, 2021. "Effects of Different Irrigation Management Practices on Potato ( Solanum tuberosum L.)," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    19. Venot, Jean-Philippe & Reddy, V. Ratna & Umapathy, Deeptha, 2010. "Coping with drought in irrigated South India: Farmers' adjustments in Nagarjuna Sagar," Agricultural Water Management, Elsevier, vol. 97(10), pages 1434-1442, October.
    20. Ćosić, Marija & Djurović, Nevenka & Todorović, Mladen & Maletić, Radojka & Zečević, Bogoljub & Stričević, Ružica, 2015. "Effect of irrigation regime and application of kaolin on yield, quality and water use efficiency of sweet pepper," Agricultural Water Management, Elsevier, vol. 159(C), pages 139-147.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:178:y:2016:i:c:p:248-257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.