IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v169y2016icp162-172.html
   My bibliography  Save this article

Modeling reference evapotranspiration using three different heuristic regression approaches

Author

Listed:
  • Kisi, Ozgur

Abstract

Modeling reference evapotranspiration (ET0) is important in reservoir management, planning regional water resources and evaluation of drinking-water supplies. The study investigates the ability of three different heuristic regression approaches, least square support vector regression (LSSVR), multivariate adaptive regression splines (MARS) and M5 Model Tree (M5Tree) in modeling ET0. The first part of the study focused on testing the accuracy of the LSSVR, MARS and M5Tree models in estimating the ET0 data of Antalya and Isparta stations located in Mediterranean Region of Turkey. Cross-validation method was utilized in the applications. The LSSVR models were observed to be better than the MARS and M5Tree models in estimating ET0 of Antalya and Isparta stations with local input and output data. The accuracy of the applied methods was investigated in estimation of ET0 using air temperature, solar radiation, relative humidity and wind speed inputs from nearby station in the second part of the study (cross-station application without local input data). The results showed that the MARS models provided better accuracy than the LSSVR and M5Tree models with respect to SI, mean absolute error (MAE) and determination coefficient (R2). In the third part of the study, the accuracy of the applied models was investigated in ET0 estimation using input and output data from nearby station. The results showed that the M5Tree models outperformed the other models with respect to SI, MAE and R2. The overall results showed that the LSSVR could be successfully used in estimating ET0 by using local input and output data. In case of without local inputs, however, the MARS model performed better than the LSSVR and M5Tree models while the M5Tree was observed to be the best alternative for estimating ET0 in the absence of local input and output data.

Suggested Citation

  • Kisi, Ozgur, 2016. "Modeling reference evapotranspiration using three different heuristic regression approaches," Agricultural Water Management, Elsevier, vol. 169(C), pages 162-172.
  • Handle: RePEc:eee:agiwat:v:169:y:2016:i:c:p:162-172
    DOI: 10.1016/j.agwat.2016.02.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377416300737
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.02.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martí, Pau & González-Altozano, Pablo & López-Urrea, Ramón & Mancha, Luis A. & Shiri, Jalal, 2015. "Modeling reference evapotranspiration with calculated targets. Assessment and implications," Agricultural Water Management, Elsevier, vol. 149(C), pages 81-90.
    2. Sharda, V.N. & Patel, R.M. & Prasher, S.O. & Ojasvi, P.R. & Prakash, Chandra, 2006. "Modeling runoff from middle Himalayan watersheds employing artificial intelligence techniques," Agricultural Water Management, Elsevier, vol. 83(3), pages 233-242, June.
    3. Ozgur Kisi, 2015. "Streamflow Forecasting and Estimation Using Least Square Support Vector Regression and Adaptive Neuro-Fuzzy Embedded Fuzzy c-means Clustering," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5109-5127, November.
    4. Ali Rahimikhoob & Maryam Asadi & Mahmood Mashal, 2013. "A Comparison Between Conventional and M5 Model Tree Methods for Converting Pan Evaporation to Reference Evapotranspiration for Semi-Arid Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4815-4826, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao, Hai & Diop, Lamine & Bodian, Ansoumana & Djaman, Koffi & Ndiaye, Papa Malick & Yaseen, Zaher Mundher, 2018. "Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: Regional case study in Burkina Faso," Agricultural Water Management, Elsevier, vol. 208(C), pages 140-151.
    2. Ahmadi, Farshad & Mehdizadeh, Saeid & Mohammadi, Babak & Pham, Quoc Bao & DOAN, Thi Ngoc Canh & Vo, Ngoc Duong, 2021. "Application of an artificial intelligence technique enhanced with intelligent water drops for monthly reference evapotranspiration estimation," Agricultural Water Management, Elsevier, vol. 244(C).
    3. Shiri, Jalal, 2017. "Evaluation of FAO56-PM, empirical, semi-empirical and gene expression programming approaches for estimating daily reference evapotranspiration in hyper-arid regions of Iran," Agricultural Water Management, Elsevier, vol. 188(C), pages 101-114.
    4. Liangfeng Zou & Yuanyuan Zha & Yuqing Diao & Chi Tang & Wenquan Gu & Dongguo Shao, 2023. "Coupling the Causal Inference and Informer Networks for Short-term Forecasting in Irrigation Water Usage," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 427-449, January.
    5. Ohana-Levi, Noa & Ben-Gal, Alon & Munitz, Sarel & Netzer, Yishai, 2022. "Grapevine crop evapotranspiration and crop coefficient forecasting using linear and non-linear multiple regression models," Agricultural Water Management, Elsevier, vol. 262(C).
    6. Wang, Sheng & Lian, Jinjiao & Peng, Yuzhong & Hu, Baoqing & Chen, Hongsong, 2019. "Generalized reference evapotranspiration models with limited climatic data based on random forest and gene expression programming in Guangxi, China," Agricultural Water Management, Elsevier, vol. 221(C), pages 220-230.
    7. Malik, Anurag & Jamei, Mehdi & Ali, Mumtaz & Prasad, Ramendra & Karbasi, Masoud & Yaseen, Zaher Mundher, 2022. "Multi-step daily forecasting of reference evapotranspiration for different climates of India: A modern multivariate complementary technique reinforced with ridge regression feature selection," Agricultural Water Management, Elsevier, vol. 272(C).
    8. Behrooz Keshtegar & Ozgur Kisi & Hamed Ghohani Arab & Mohammad Zounemat-Kermani, 2018. "Subset Modeling Basis ANFIS for Prediction of the Reference Evapotranspiration," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 1101-1116, February.
    9. Mahmoudi, Neda & Majidi, Arash & Jamei, Mehdi & Jalali, Mohammadnabi & Maroufpoor, Saman & Shiri, Jalal & Yaseen, Zaher Mundher, 2022. "Mutating fuzzy logic model with various rigorous meta-heuristic algorithms for soil moisture content estimation," Agricultural Water Management, Elsevier, vol. 261(C).
    10. Feng, Yu & Cui, Ningbo & Gong, Daozhi & Zhang, Qingwen & Zhao, Lu, 2017. "Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling," Agricultural Water Management, Elsevier, vol. 193(C), pages 163-173.
    11. Wu, Lifeng & Peng, Youwen & Fan, Junliang & Wang, Yicheng & Huang, Guomin, 2021. "A novel kernel extreme learning machine model coupled with K-means clustering and firefly algorithm for estimating monthly reference evapotranspiration in parallel computation," Agricultural Water Management, Elsevier, vol. 245(C).
    12. Feng, Yu & Jia, Yue & Cui, Ningbo & Zhao, Lu & Li, Chen & Gong, Daozhi, 2017. "Calibration of Hargreaves model for reference evapotranspiration estimation in Sichuan basin of southwest China," Agricultural Water Management, Elsevier, vol. 181(C), pages 1-9.
    13. Tianao Wu & Wei Zhang & Xiyun Jiao & Weihua Guo & Yousef Alhaj Hamoud, 2020. "Comparison of five Boosting-based models for estimating daily reference evapotranspiration with limited meteorological variables," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-28, June.
    14. Valiantzas, John D., 2018. "Temperature-and humidity-based simplified Penman’s ET0 formulae. Comparisons with temperature-based Hargreaves-Samani and other methodologies," Agricultural Water Management, Elsevier, vol. 208(C), pages 326-334.
    15. Dilip Kumar Roy & Kowshik Kumar Saha & Mohammad Kamruzzaman & Sujit Kumar Biswas & Mohammad Anower Hossain, 2021. "Hierarchical Fuzzy Systems Integrated with Particle Swarm Optimization for Daily Reference Evapotranspiration Prediction: a Novel Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5383-5407, December.
    16. Yamaç, Sevim Seda & Todorovic, Mladen, 2020. "Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data," Agricultural Water Management, Elsevier, vol. 228(C).
    17. Rana Muhammad Adnan & Salim Heddam & Zaher Mundher Yaseen & Shamsuddin Shahid & Ozgur Kisi & Binquan Li, 2020. "Prediction of Potential Evapotranspiration Using Temperature-Based Heuristic Approaches," Sustainability, MDPI, vol. 13(1), pages 1-21, December.
    18. Elbeltagi, Ahmed & Deng, Jinsong & Wang, Ke & Malik, Anurag & Maroufpoor, Saman, 2020. "Modeling long-term dynamics of crop evapotranspiration using deep learning in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali, Mumtaz & Prasad, Ramendra & Xiang, Yong & Deo, Ravinesh C., 2020. "Near real-time significant wave height forecasting with hybridized multiple linear regression algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    2. Feiyan Chen & Zhigao Zhou & Aiwen Lin & Jiqiang Niu & Wenmin Qin & Zhong Yang, 2019. "Evaluation of Direct Horizontal Irradiance in China Using a Physically-Based Model and Machine Learning Methods," Energies, MDPI, vol. 12(1), pages 1-19, January.
    3. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    4. Aman Kalteh, 2016. "Improving Forecasting Accuracy of Streamflow Time Series Using Least Squares Support Vector Machine Coupled with Data-Preprocessing Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 747-766, January.
    5. Lu, Yingjie & Li, Tao & Hu, Hui & Zeng, Xuemei, 2023. "Short-term prediction of reference crop evapotranspiration based on machine learning with different decomposition methods in arid areas of China," Agricultural Water Management, Elsevier, vol. 279(C).
    6. Aman Mohammad Kalteh, 2016. "Improving Forecasting Accuracy of Streamflow Time Series Using Least Squares Support Vector Machine Coupled with Data-Preprocessing Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 747-766, January.
    7. Feng, Yu & Jia, Yue & Cui, Ningbo & Zhao, Lu & Li, Chen & Gong, Daozhi, 2017. "Calibration of Hargreaves model for reference evapotranspiration estimation in Sichuan basin of southwest China," Agricultural Water Management, Elsevier, vol. 181(C), pages 1-9.
    8. Shiri, Jalal, 2017. "Evaluation of FAO56-PM, empirical, semi-empirical and gene expression programming approaches for estimating daily reference evapotranspiration in hyper-arid regions of Iran," Agricultural Water Management, Elsevier, vol. 188(C), pages 101-114.
    9. Keshtegar, Behrooz & Mert, Cihan & Kisi, Ozgur, 2018. "Comparison of four heuristic regression techniques in solar radiation modeling: Kriging method vs RSM, MARS and M5 model tree," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 330-341.
    10. Wenxin Xu & Jie Chen & Xunchang J. Zhang, 2022. "Scale Effects of the Monthly Streamflow Prediction Using a State-of-the-art Deep Learning Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3609-3625, August.
    11. Wu, Lifeng & Peng, Youwen & Fan, Junliang & Wang, Yicheng & Huang, Guomin, 2021. "A novel kernel extreme learning machine model coupled with K-means clustering and firefly algorithm for estimating monthly reference evapotranspiration in parallel computation," Agricultural Water Management, Elsevier, vol. 245(C).
    12. He, Xinlei & Liu, Shaomin & Xu, Tongren & Yu, Kailiang & Gentine, Pierre & Zhang, Zhe & Xu, Ziwei & Jiao, Dandan & Wu, Dongxing, 2022. "Improving predictions of evapotranspiration by integrating multi-source observations and land surface model," Agricultural Water Management, Elsevier, vol. 272(C).
    13. Pandey, Dharen Kumar & Hunjra, Ahmed Imran & Bhaskar, Ratikant & Al-Faryan, Mamdouh Abdulaziz Saleh, 2023. "Artificial intelligence, machine learning and big data in natural resources management: A comprehensive bibliometric review of literature spanning 1975–2022," Resources Policy, Elsevier, vol. 86(PA).
    14. Rana Muhammad Adnan Ikram & Leonardo Goliatt & Ozgur Kisi & Slavisa Trajkovic & Shamsuddin Shahid, 2022. "Covariance Matrix Adaptation Evolution Strategy for Improving Machine Learning Approaches in Streamflow Prediction," Mathematics, MDPI, vol. 10(16), pages 1-30, August.
    15. Deo, Ravinesh C. & Şahin, Mehmet & Adamowski, Jan F. & Mi, Jianchun, 2019. "Universally deployable extreme learning machines integrated with remotely sensed MODIS satellite predictors over Australia to forecast global solar radiation: A new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 235-261.
    16. Zaher Mundher Yaseen & Minglei Fu & Chen Wang & Wan Hanna Melini Wan Mohtar & Ravinesh C. Deo & Ahmed El-shafie, 2018. "Application of the Hybrid Artificial Neural Network Coupled with Rolling Mechanism and Grey Model Algorithms for Streamflow Forecasting Over Multiple Time Horizons," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1883-1899, March.
    17. Fan, Junliang & Wu, Lifeng & Zhang, Fucang & Cai, Huanjie & Zeng, Wenzhi & Wang, Xiukang & Zou, Haiyang, 2019. "Empirical and machine learning models for predicting daily global solar radiation from sunshine duration: A review and case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 186-212.
    18. Ye Tian & Xiaobai Yao, 2022. "Urban form, traffic volume, and air quality: A spatiotemporal stratified approach," Environment and Planning B, , vol. 49(1), pages 92-113, January.
    19. García Nieto, Paulino José & García–Gonzalo, Esperanza & Paredes–Sánchez, Beatriz María & Paredes–Sánchez, José Pablo, 2023. "Modelling energy performance of residential dwellings by using the MARS technique, SVM-based approach, MLP neural network and M5 model tree," Applied Energy, Elsevier, vol. 341(C).
    20. Prasad, Ramendra & Ali, Mumtaz & Kwan, Paul & Khan, Huma, 2019. "Designing a multi-stage multivariate empirical mode decomposition coupled with ant colony optimization and random forest model to forecast monthly solar radiation," Applied Energy, Elsevier, vol. 236(C), pages 778-792.

    More about this item

    Keywords

    Reference evapotranspiration; Heuristic regression approaches; Least square support vector regression; Multivariate adaptive regression splines; M5 model tree; Modeling;
    All these keywords.

    JEL classification:

    • M5 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Personnel Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:169:y:2016:i:c:p:162-172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.