IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v165y2016icp82-96.html
   My bibliography  Save this article

Water use and productivity of a sorghum–cowpea–bottle gourd intercrop system

Author

Listed:
  • Chimonyo, V.G.P.
  • Modi, A.T.
  • Mabhaudhi, T.

Abstract

Water is the main factor affecting crop production in sub-Saharan Africa. It was hypothesized that intercropping sorghum (S) with either cowpea (C) or bottle gourd (B) would result in better productivity and water use efficiency (WUE). This was evaluated using a split-plot design with sub-plots arranged in a randomised complete block manner within the main plot, replicated thrice. Water regimes [full irrigation (FI), deficit irrigation (DI) and rainfed (RF)] were allocated to the main plots. Sub-plots comprised intercrop combinations, SS (sole), C (sole), B (sole), SC (intercrop) and SB (intercrop). Data collected included soil water content (SWC), plant height (PH)/vine length, leaf number (LN), tillering (T)/branching, leaf area index (LAI), relative leaf water content (RWC), stomatal conductance (gs) and chlorophyll content index (CCI) as well as biomass accumulation and partitioning. Yield and yield components, water use (WU) and WUE for grain (WUEg) were calculated at harvest. Land equivalent ratio (LER) was used to evaluate productivity of the intercrop. Sorghum canopy size decreased (P<0.05) (−6.7%, −10.6%, −89% and −79% for PH, LN, T and LAI, respectively) with decreasing water availability. Sorghum growth and development were unaffected by intercropping. Intercropping sorghum with cowpea improved gs (23%) and CCI (6.56%) of sorghum under low water availability. Productivity of sorghum across varying water regimes and cropping systems was stable with final biomass, yield and harvest index of 2.4tha−1, 0.98tha−1 and 35%, respectively. Overall, LER showed a 46% increase in productivity across all intercrop systems. Intercropping marginally increased WU (5.64%). Improvements of WUEg were observed under SC and SB (54.65% and 46.98%, respectively) relative to SS. Intercropping sorghum with cowpea is recommended for semi-and arid environments since it promoted efficient use of water.

Suggested Citation

  • Chimonyo, V.G.P. & Modi, A.T. & Mabhaudhi, T., 2016. "Water use and productivity of a sorghum–cowpea–bottle gourd intercrop system," Agricultural Water Management, Elsevier, vol. 165(C), pages 82-96.
  • Handle: RePEc:eee:agiwat:v:165:y:2016:i:c:p:82-96
    DOI: 10.1016/j.agwat.2015.11.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377415301670
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.11.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rockstr m, J. & Barron, J. & Fox, P., 2003. "Water productivity in rain-fed agriculture: challenges and opportunities for smallholder farmers in drought-prone tropical agroecosystems," IWMI Books, Reports H032640, International Water Management Institute.
    2. Passioura, John, 2006. "Increasing crop productivity when water is scarce--from breeding to field management," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 176-196, February.
    3. Molden, David & Oweis, Theib & Steduto, Pasquale & Bindraban, Prem & Hanjra, Munir A. & Kijne, Jacob, 2010. "Improving agricultural water productivity: Between optimism and caution," Agricultural Water Management, Elsevier, vol. 97(4), pages 528-535, April.
    4. Kizito, F. & Sene, M. & Dragila, M.I. & Lufafa, A. & Diedhiou, I. & Dossa, E. & Cuenca, R. & Selker, J. & Dick, R.P., 2007. "Soil water balance of annual crop-native shrub systems in Senegal's Peanut Basin: The missing link," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 137-148, May.
    5. Kijne, J. W. & Barker, R. & Molden. D., 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, Reports H032631, International Water Management Institute.
    6. Mabhaudhi, T. & Modi, A.T. & Beletse, Y.G., 2013. "Response of taro (Colocasia esculenta L. Schott) landraces to varying water regimes under a rainshelter," Agricultural Water Management, Elsevier, vol. 121(C), pages 102-112.
    7. Rockström, Johan & Karlberg, Louise & Wani, Suhas P. & Barron, Jennie & Hatibu, Nuhu & Oweis, Theib & Bruggeman, Adriana & Farahani, Jalali & Qiang, Zhu, 2010. "Managing water in rainfed agriculture--The need for a paradigm shift," Agricultural Water Management, Elsevier, vol. 97(4), pages 543-550, April.
    8. Deng, Xi-Ping & Shan, Lun & Zhang, Heping & Turner, Neil C., 2006. "Improving agricultural water use efficiency in arid and semiarid areas of China," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 23-40, February.
    9. Mueller, Lothar & Behrendt, Axel & Schalitz, Gisbert & Schindler, Uwe, 2005. "Above ground biomass and water use efficiency of crops at shallow water tables in a temperate climate," Agricultural Water Management, Elsevier, vol. 75(2), pages 117-136, July.
    10. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    11. Kijne, Jacob W. & Barker, Randolph & Molden, David J. (ed.), 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, International Water Management Institute, number 138054.
    12. Farre, Imma & Faci, Jose Maria, 2006. "Comparative response of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 135-143, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nyathi, M.K. & Du Plooy, C.P. & Van Halsema, G.E. & Stomph, T.J. & Annandale, J.G. & Struik, P.C., 2019. "The dual-purpose use of orange-fleshed sweet potato (Ipomoea batatas var. Bophelo) for improved nutritional food security," Agricultural Water Management, Elsevier, vol. 217(C), pages 23-37.
    2. Gitari, Harun I. & Gachene, Charles K.K. & Karanja, Nancy N. & Kamau, Solomon & Nyawade, Shadrack & Sharma, Kalpana & Schulte-Geldermann, Elmar, 2018. "Optimizing yield and economic returns of rain-fed potato (Solanum tuberosum L.) through water conservation under potato-legume intercropping systems," Agricultural Water Management, Elsevier, vol. 208(C), pages 59-66.
    3. Elamri, Y. & Cheviron, B. & Lopez, J.-M. & Dejean, C. & Belaud, G., 2018. "Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces," Agricultural Water Management, Elsevier, vol. 208(C), pages 440-453.
    4. Nyathi, M.K. & Van Halsema, G.E. & Beletse, Y.G. & Annandale, J.G. & Struik, P.C., 2018. "Nutritional water productivity of selected leafy vegetables," Agricultural Water Management, Elsevier, vol. 209(C), pages 111-122.
    5. Wang, Maojian & Shi, Wei & Kamran, Muhammad & Chang, Shenghua & Jia, Qianmin & Hou, Fujiang, 2024. "Effects of intercropping and regulated deficit irrigation on the yield, water and land resource utilization, and economic benefits of forage maize in arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 298(C).
    6. Nyathi, M.K. & Mabhaudhi, T. & Van Halsema, G.E. & Annandale, J.G. & Struik, P.C., 2019. "Benchmarking nutritional water productivity of twenty vegetables - A review," Agricultural Water Management, Elsevier, vol. 221(C), pages 248-259.
    7. Yin, Wen & Chai, Qiang & Zhao, Cai & Yu, Aizhong & Fan, Zhilong & Hu, Falong & Fan, Hong & Guo, Yao & Coulter, Jeffrey A., 2020. "Water utilization in intercropping: A review," Agricultural Water Management, Elsevier, vol. 241(C).
    8. Chimonyo, V.G.P. & Modi, A.T. & Mabhaudhi, T., 2016. "Simulating yield and water use of a sorghum–cowpea intercrop using APSIM," Agricultural Water Management, Elsevier, vol. 177(C), pages 317-328.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    2. Assefa, Shibeshi & Biazin, Birhanu & Muluneh, Alemayehu & Yimer, Fantaw & Haileslassie, Amare, 2016. "Rainwater harvesting for supplemental irrigation of onions in the southern dry lands of Ethiopia," Agricultural Water Management, Elsevier, vol. 178(C), pages 325-334.
    3. Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
    4. Descheemaeker, K. & Bunting, S. W. & Bindraban, P. & Muthuri, C. & Molden, D. & Beveridge, M. & van Brakel, Martin & Herrero, M. & Clement, Floriane & Boelee, Eline & Jarvis, D. I., 2013. "Increasing water productivity in Agriculture," Book Chapters,, International Water Management Institute.
    5. Pereira, Luis S. & Cordery, Ian & Iacovides, Iacovos, 2012. "Improved indicators of water use performance and productivity for sustainable water conservation and saving," Agricultural Water Management, Elsevier, vol. 108(C), pages 39-51.
    6. Tsegay, Alemtsehay & Vanuytrecht, Eline & Abrha, Berhanu & Deckers, Jozef & Gebrehiwot, Kindeya & Raes, Dirk, 2015. "Sowing and irrigation strategies for improving rainfed tef (Eragrostis tef (Zucc.) Trotter) production in the water scarce Tigray region, Ethiopia," Agricultural Water Management, Elsevier, vol. 150(C), pages 81-91.
    7. Matteau, Jean-Pascal & Célicourt, Paul & Létourneau, Guillaume & Gumiere, Thiago & Gumiere, Silvio J., 2022. "Effects of irrigation thresholds and temporal distribution on potato yield and water productivity in sandy soil," Agricultural Water Management, Elsevier, vol. 264(C).
    8. Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).
    9. Lankford, B. & Makin, Ian & Matthews, N. & McCornick, Peter G. & Noble, A. & Shah, Tushaar, "undated". "A compact to revitalise large-scale irrigation systems using a leadership-partnership-ownership 'Theory of Change'," Papers published in Journals (Open Access) H047459, International Water Management Institute.
    10. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    11. Ghahroodi, E. Mokari & Noory, H. & Liaghat, A.M., 2015. "Performance evaluation study and hydrologic and productive analysis of irrigation systems at the Qazvin irrigation network (Iran)," Agricultural Water Management, Elsevier, vol. 148(C), pages 189-195.
    12. Ahmad, Mirza Junaid & Iqbal, Muhammad Anjum & Choi, Kyung Sook, 2020. "Climate-driven constraints in sustaining future wheat yield and water productivity," Agricultural Water Management, Elsevier, vol. 231(C).
    13. Eric Njuki & Boris E. Bravo-Ureta, 2019. "Examining irrigation productivity in U.S. agriculture using a single-factor approach," Journal of Productivity Analysis, Springer, vol. 51(2), pages 125-136, June.
    14. Krauß, Michael & Kraatz, Simone & Drastig, Katrin & Prochnow, Annette, 2015. "The influence of dairy management strategies on water productivity of milk production," Agricultural Water Management, Elsevier, vol. 147(C), pages 175-186.
    15. María Blanco & Benjamin Van Doorslaer & Wolfgang Britz & Heinz-Peter Witzke, 2012. "Exploring the feasibility of integrating water issues into the CAPRI model," JRC Research Reports JRC77058, Joint Research Centre.
    16. Zwart, Sander J. & Bastiaanssen, Wim G.M. & de Fraiture, Charlotte & Molden, David J., 2010. "WATPRO: A remote sensing based model for mapping water productivity of wheat," Agricultural Water Management, Elsevier, vol. 97(10), pages 1628-1636, October.
    17. Elke Noellemeyer & Romina Fernández & Alberto Quiroga, 2013. "Crop and Tillage Effects on Water Productivity of Dryland Agriculture in Argentina," Agriculture, MDPI, vol. 3(1), pages 1-11, January.
    18. Grum, Berhane & Hessel, Rudi & Kessler, Aad & Woldearegay, Kifle & Yazew, Eyasu & Ritsema, Coen & Geissen, Violette, 2016. "A decision support approach for the selection and implementation of water harvesting techniques in arid and semi-arid regions," Agricultural Water Management, Elsevier, vol. 173(C), pages 35-47.
    19. Luxon Nhamo & James Magidi & Adolph Nyamugama & Alistair D. Clulow & Mbulisi Sibanda & Vimbayi G. P. Chimonyo & Tafadzwanashe Mabhaudhi, 2020. "Prospects of Improving Agricultural and Water Productivity through Unmanned Aerial Vehicles," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    20. Amrita Chatterjee & Arpita Ghose, 2016. "A dynamic economic model of soil conservation and drought tolerance involving genetically modified crops," Journal of Social and Economic Development, Springer;Institute for Social and Economic Change, vol. 18(1), pages 40-66, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:165:y:2016:i:c:p:82-96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.