IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v98y2011i4p665-674.html
   My bibliography  Save this article

Soil water dynamics under various agricultural land covers on a subsurface drained field in north-central Iowa, USA

Author

Listed:
  • Qi, Zhiming
  • Helmers, Matthew J.
  • Kaleita, Amy L.

Abstract

Modification of land cover systems is being studied in subsurface drained Iowa croplands due to their potential benefits in increasing soil water and nitrogen depletion thus reducing drainage and NO3-N loss in the spring period. The objective of this study was to evaluate the impacts of modified land covers on soil water dynamics. In each individual year, modified land covers including winter rye-corn (rC), winter rye-soybean (rS), kura clover as a living mulch for corn (kC), and perennial forage (PF), as well as conventional corn (C) and soybean (S), were grown in subsurface drained plots in north-central Iowa. Results showed that subsurface drainage was not reduced under modified land covers in comparison to conventional corn and soybean. Soil water storage (SWS) was significantly reduced by PF treatments during the whole growing seasons and by kC during May through July when compared to the cropping system with corn or soybean only (pÂ

Suggested Citation

  • Qi, Zhiming & Helmers, Matthew J. & Kaleita, Amy L., 2011. "Soil water dynamics under various agricultural land covers on a subsurface drained field in north-central Iowa, USA," Agricultural Water Management, Elsevier, vol. 98(4), pages 665-674, February.
  • Handle: RePEc:eee:agiwat:v:98:y:2011:i:4:p:665-674
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00362-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Odhiambo, J.J.O. & Bomke, A.A., 2007. "Cover crop effects on spring soil water content and the implications for cover crop management in south coastal British Columbia," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 92-98, March.
    2. Singh, R. & Helmers, M.J. & Qi, Zhiming, 2006. "Calibration and validation of DRAINMOD to design subsurface drainage systems for Iowa's tile landscapes," Agricultural Water Management, Elsevier, vol. 85(3), pages 221-232, October.
    3. Islam, Nazrul & Wallender, Wesley W. & Mitchell, Jeffrey & Wicks, Santhi & Howitt, Richard E., 2006. "A comprehensive experimental study with mathematical modeling to investigate the affects of cropping practices on water balance variables," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 129-147, April.
    4. Aparicio, V. & Costa, J.L. & Zamora, M., 2008. "Nitrate leaching assessment in a long-term experiment under supplementary irrigation in humid Argentina," Agricultural Water Management, Elsevier, vol. 95(12), pages 1361-1372, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Wei & Feng, Gary & Adeli, Ardeshir & Kersebaum, K.C. & Jenkins, Johnie N. & Li, Pinfang, 2019. "Long-term effect of cover crop on rainwater balance components and use efficiency in the no-tilled and rainfed corn and soybean rotation system," Agricultural Water Management, Elsevier, vol. 219(C), pages 27-39.
    2. Meredith Hovis & Joseph Chris Hollinger & Frederick Cubbage & Theodore Shear & Barbara Doll & J. Jack Kurki-Fox & Daniel Line & Andrew Fox & Madalyn Baldwin & Travis Klondike & Michelle Lovejoy & Brya, 2021. "Natural Infrastructure Practices as Potential Flood Storage and Reduction for Farms and Rural Communities in the North Carolina Coastal Plain," Sustainability, MDPI, vol. 13(16), pages 1-25, August.
    3. Basche, Andrea D. & Kaspar, Thomas C. & Archontoulis, Sotirios V. & Jaynes, Dan B. & Sauer, Thomas J. & Parkin, Timothy B. & Miguez, Fernando E., 2016. "Soil water improvements with the long-term use of a winter rye cover crop," Agricultural Water Management, Elsevier, vol. 172(C), pages 40-50.
    4. Schomberg, Harry H. & White, Kathryn E. & Thompson, Alondra I. & Bagley, Gwendolyn A. & Burke, Allen & Garst, Grace & Bybee-Finley, K. Ann & Mirsky, Steven B., 2023. "Interseeded cover crop mixtures influence soil water storage during the corn phase of corn-soybean-wheat no-till cropping systems," Agricultural Water Management, Elsevier, vol. 278(C).
    5. Li, Yizhuo & Tian, Di & Feng, Gary & Yang, Wei & Feng, Liping, 2021. "Climate change and cover crop effects on water use efficiency of a corn-soybean rotation system," Agricultural Water Management, Elsevier, vol. 255(C).
    6. Li, Yinkun & Wang, Lichun & Xue, Xuzhang & Guo, Wenzhong & Xu, Fan & Li, Youli & Sun, Weituo & Chen, Fei, 2017. "Comparison of drip fertigation and negative pressure fertigation on soil water dynamics and water use efficiency of greenhouse tomato grown in the North China Plain," Agricultural Water Management, Elsevier, vol. 184(C), pages 1-8.
    7. Wang, Feng & Wang, Yulong & Lyu, Hanqiang & Fan, Zhilong & Hu, Falong & He, Wei & Yin, Wen & Zhao, Cai & Chai, Qiang & Yu, Aizhong, 2023. "No-tillage mulch with leguminous green manure retention reduces soil evaporation and increases yield and water productivity of maize," Agricultural Water Management, Elsevier, vol. 290(C).
    8. Peyton Ginakes & Julie M. Grossman & John M. Baker & Thanwalee Sooksa-nguan, 2020. "Living Mulch Management Spatially Localizes Nutrient Cycling in Organic Corn Production," Agriculture, MDPI, vol. 10(6), pages 1-10, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Negm, L.M. & Youssef, M.A. & Skaggs, R.W. & Chescheir, G.M. & Jones, J., 2014. "DRAINMOD–DSSAT model for simulating hydrology, soil carbon and nitrogen dynamics, and crop growth for drained crop land," Agricultural Water Management, Elsevier, vol. 137(C), pages 30-45.
    2. Matinzadeh, Mohammad Mehdi & Abedi Koupai, Jahangir & Sadeghi-Lari, Adnan & Nozari, Hamed & Shayannejad, Mohammad, 2017. "Development of an innovative integrated model for the simulation of nitrogen dynamics in farmlands with drainage systems using the system dynamics approach," Ecological Modelling, Elsevier, vol. 347(C), pages 11-28.
    3. Qi, Zhiming & Singh, Ranvir & Helmers, Matthew J. & Zhou, Xiaobo, 2015. "Evaluating the performance of DRAINMOD using soil hydraulic parameters derived by various methods," Agricultural Water Management, Elsevier, vol. 155(C), pages 48-52.
    4. Turunen, M. & Warsta, L. & Paasonen-Kivekäs, M. & Nurminen, J. & Myllys, M. & Alakukku, L. & Äijö, H. & Puustinen, M. & Koivusalo, H., 2013. "Modeling water balance and effects of different subsurface drainage methods on water outflow components in a clayey agricultural field in boreal conditions," Agricultural Water Management, Elsevier, vol. 121(C), pages 135-148.
    5. Jiang, Yao & Xu, Xu & Huang, Quanzhong & Huo, Zailin & Huang, Guanhua, 2016. "Optimizing regional irrigation water use by integrating a two-level optimization model and an agro-hydrological model," Agricultural Water Management, Elsevier, vol. 178(C), pages 76-88.
    6. Ghane, Ehsan & Askar, Manal H., 2021. "Predicting the effect of drain depth on profitability and hydrology of subsurface drainage systems across the eastern USA," Agricultural Water Management, Elsevier, vol. 258(C).
    7. Gunn, Kpoti M. & Baule, William J. & Frankenberger, Jane R. & Gamble, Debra L. & Allred, Barry J. & Andresen, Jeff A. & Brown, Larry C., 2018. "Modeled climate change impacts on subirrigated maize relative yield in northwest Ohio," Agricultural Water Management, Elsevier, vol. 206(C), pages 56-66.
    8. Feng, Genxiang & Zhang, Zhanyu & Wan, Changyu & Lu, Peirong & Bakour, Ahmad, 2017. "Effects of saline water irrigation on soil salinity and yield of summer maize (Zea mays L.) in subsurface drainage system," Agricultural Water Management, Elsevier, vol. 193(C), pages 205-213.
    9. Schilling, Keith E. & Streeter, Matthew T. & Vogelgesang, Jason & Jones, Christopher S. & Seeman, Anthony, 2020. "Subsurface nutrient export from a cropped field to an agricultural stream: Implications for targeting edge-of-field practices," Agricultural Water Management, Elsevier, vol. 241(C).
    10. Sloan, Brandon P. & Basu, Nandita B. & Mantilla, Ricardo, 2016. "Hydrologic impacts of subsurface drainage at the field scale: Climate, landscape and anthropogenic controls," Agricultural Water Management, Elsevier, vol. 165(C), pages 1-10.
    11. Salazar, Osvaldo & Wesström, Ingrid & Youssef, Mohamed A. & Skaggs, R. Wayne & Joel, Abraham, 2009. "Evaluation of the DRAINMOD-N II model for predicting nitrogen losses in a loamy sand under cultivation in south-east Sweden," Agricultural Water Management, Elsevier, vol. 96(2), pages 267-281, February.
    12. Qian, Yingzhi & Zhu, Yan & Ye, Ming & Huang, Jiesheng & Wu, Jingwei, 2021. "Experiment and numerical simulation for designing layout parameters of subsurface drainage pipes in arid agricultural areas," Agricultural Water Management, Elsevier, vol. 243(C).
    13. Liang, Hao & Qi, Zhiming & Hu, Kelin & Li, Baoguo & Prasher, Shiv O., 2018. "Modelling subsurface drainage and nitrogen losses from artificially drained cropland using coupled DRAINMOD and WHCNS models," Agricultural Water Management, Elsevier, vol. 195(C), pages 201-210.
    14. Ale, Srinivasulu & Gowda, Prasanna H. & Mulla, David J. & Moriasi, Daniel N. & Youssef, Mohamed A., 2013. "Comparison of the performances of DRAINMOD-NII and ADAPT models in simulating nitrate losses from subsurface drainage systems," Agricultural Water Management, Elsevier, vol. 129(C), pages 21-30.
    15. Revuelta-Acosta, J.D. & Flanagan, D.C. & Engel, B.A. & King, K.W., 2021. "Improvement of the Water Erosion Prediction Project (WEPP) model for quantifying field scale subsurface drainage discharge," Agricultural Water Management, Elsevier, vol. 244(C).
    16. Salazar, Osvaldo & Wesström, Ingrid & Joel, Abraham, 2008. "Evaluation of DRAINMOD using saturated hydraulic conductivity estimated by a pedotransfer function model," Agricultural Water Management, Elsevier, vol. 95(10), pages 1135-1143, October.
    17. Singh, R. & Helmers, M.J. & Crumpton, W.G. & Lemke, D.W., 2007. "Predicting effects of drainage water management in Iowa's subsurface drained landscapes," Agricultural Water Management, Elsevier, vol. 92(3), pages 162-170, September.
    18. Costa, José Luis & Aparicio, Virginia Carolina & Sallesses, Leonardo Fabian & Frolla, Franco Daniel, 2016. "Effect of tillage and application of gypsum In a No-Till field under supplementary irrigation with sodium bicarbonate waters," Agricultural Water Management, Elsevier, vol. 177(C), pages 291-297.
    19. Muschietti-Piana, Maria del Pilar & Cipriotti, Pablo Ariel & Urricariet, Susana & Peralta, Nahuel Raul & Niborski, Mauricio, 2018. "Using site-specific nitrogen management in rainfed corn to reduce the risk of nitrate leaching," Agricultural Water Management, Elsevier, vol. 199(C), pages 61-70.
    20. Kroes, Joop & van Dam, Jos & Supit, Iwan & de Abelleyra, Diego & Verón, Santiago & de Wit, Allard & Boogaard, Hendrik & Angelini, Marcos & Damiano, Francisco & Groenendijk, Piet & Wesseling, Jan & Vel, 2019. "Agrohydrological analysis of groundwater recharge and land use changes in the Pampas of Argentina," Agricultural Water Management, Elsevier, vol. 213(C), pages 843-857.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:98:y:2011:i:4:p:665-674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.