IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v114y2012icp67-77.html
   My bibliography  Save this article

Species-specific water use by forest tree species: From the tree to the stand

Author

Listed:
  • Aranda, Ismael
  • Forner, Alicia
  • Cuesta, Barbara
  • Valladares, Fernando

Abstract

Forests play a critical role in the hydrological cycle making the study of water use by trees and forest stands of prime importance in the global change context .Very negative effects of increasing and more intense droughts on forest vegetation have been described over the last decades. Symptoms of disease and decline have been associated with changed precipitation patterns in many forests particularly in European temperate and Mediterranean regions. Intra- and inter-specific differences in both physiology and morphology exert a large but not well understood influence on the water balance of forest ecosystems, further affecting their vulnerability to drought. Stand structure and composition influences rainfall interception, runoff and water fluxes of the whole ecosystem. Both expanding plantations of renovated interest for biofuel industry and natural and semi-natural forests must be managed in a sustainable way on the basis of their water consumption. We review the role of key drivers on forest water use such as species composition, tree canopy status of each of them and species specific sensitivity to soil water scarcity. Specifically we discuss the role of these factors for natural forest, but with references also to forest plantations. Water scarcity is expected to be one of the largest societal problems worldwide in the near future, so water use by natural and planted forest ecosystems has become a central subject in current research agendas.

Suggested Citation

  • Aranda, Ismael & Forner, Alicia & Cuesta, Barbara & Valladares, Fernando, 2012. "Species-specific water use by forest tree species: From the tree to the stand," Agricultural Water Management, Elsevier, vol. 114(C), pages 67-77.
  • Handle: RePEc:eee:agiwat:v:114:y:2012:i:c:p:67-77
    DOI: 10.1016/j.agwat.2012.06.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377412001722
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2012.06.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geoffrey B. West & James H. Brown & Brian J. Enquist, 1999. "A general model for the structure and allometry of plant vascular systems," Nature, Nature, vol. 400(6745), pages 664-667, August.
    2. McNaughton, K. G. & Jarvis, P. G., 1984. "Using the Penman-Monteith equation predictively," Agricultural Water Management, Elsevier, vol. 8(1-3), pages 263-278, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Solange Filoso & Maíra Ometto Bezerra & Katherine C B Weiss & Margaret A Palmer, 2017. "Impacts of forest restoration on water yield: A systematic review," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-26, August.
    2. Yohana G. Jimenez & Ezequiel Aráoz, 2024. "Modeling the Role of Novel Ecosystems in Runoff and Soil Protection: Native and Non-native Subtropical Montane Forests," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(10), pages 3837-3852, August.
    3. Minhas, P.S. & Yadav, R.K. & Lal, K. & Chaturvedi, R.K., 2015. "Effect of long-term irrigation with wastewater on growth, biomass production and water use by Eucalyptus (Eucalyptus tereticornis Sm.) planted at variable stocking density," Agricultural Water Management, Elsevier, vol. 152(C), pages 151-160.
    4. J. Remeš & L. Bílek & J. Novák & Z. Vacek & S. Vacek & T. Putalová & L. Koubek, 2015. "Diameter increment of beech in relation to social position of trees, climate characteristics and thinning intensity," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 61(10), pages 456-464.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongying Li & Zhongwen Huang & Junyi Gai & Song Wu & Yanru Zeng & Qin Li & Rongling Wu, 2007. "A Conceptual Framework for Mapping Quantitative Trait Loci Regulating Ontogenetic Allometry," PLOS ONE, Public Library of Science, vol. 2(11), pages 1-10, November.
    2. Eglin, Thomas & Francois, Christophe & Michelot, Alice & Delpierre, Nicolas & Damesin, Claire, 2010. "Linking intra-seasonal variations in climate and tree-ring δ13C: A functional modelling approach," Ecological Modelling, Elsevier, vol. 221(15), pages 1779-1797.
    3. Kohei Koyama & Yoshiki Hidaka & Masayuki Ushio, 2012. "Dynamic Scaling in the Growth of a Non-Branching Plant, Cardiocrinum cordatum," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-5, September.
    4. Baiamonte, Giorgio & Motisi, Antonio, 2020. "Analytical approach extending the Granier method to radial sap flow patterns," Agricultural Water Management, Elsevier, vol. 231(C).
    5. Xu, Meng & Jiang, Mengke & Wang, Hua-Feng, 2021. "Integrating metabolic scaling variation into the maximum entropy theory of ecology explains Taylor's law for individual metabolic rate in tropical forests," Ecological Modelling, Elsevier, vol. 455(C).
    6. Hannah Capes & Robert J. Maillardet & Thomas G. Baker & Christopher J. Weston & Don McGuire & Ian C. Dumbrell & Andrew P. Robinson, 2017. "The Allometric Quarter-Power Scaling Model and Its Applicability to Grand Fir and Eucalyptus Trees," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 562-584, December.
    7. Guan-Zhi Liu & Kai Zhao & Shi-Qi Zhang & Yu-Mei Liang & Yong-Jie Yue & Guo-Hou Liu & Fu-Cang Qin, 2024. "Biomass Allocation and Allometric Relationship of Salix gordejevii Branches in Sandy Habitats Heterogeneity in Northern China," Sustainability, MDPI, vol. 16(13), pages 1-17, June.
    8. GANIO-MEGO, Joe, 2022. "The instant and historical Preston curves: allometry quarter-power law valid for the humans," SocArXiv y8rbt, Center for Open Science.
    9. Denise Pumain & Céline Rozenblat, 2019. "Two metropolisation gradients in the European system of cities revealed by scaling laws," Environment and Planning B, , vol. 46(9), pages 1645-1662, November.
    10. Fan Xu & Zeng Zhou & Sergio Fagherazzi & Andrea D’Alpaos & Ian Townend & Kun Zhao & Weiming Xie & Leicheng Guo & Xianye Wang & Zhong Peng & Zhicheng Yang & Chunpeng Chen & Guangcheng Cheng & Yuan Xu &, 2024. "Anomalous scaling of branching tidal networks in global coastal wetlands and mudflats," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Watt, Michael S. & Kirschbaum, Miko U.F., 2011. "Moving beyond simple linear allometric relationships between tree height and diameter," Ecological Modelling, Elsevier, vol. 222(23), pages 3910-3916.
    12. Herberich, Maximiliane Marion & Gayler, Sebastian & Anand, Madhur & Tielbörger, Katja, 2017. "Hydrological niche segregation of plant functional traits in an individual-based model," Ecological Modelling, Elsevier, vol. 356(C), pages 14-24.
    13. GANIO-MEGO, Joe, 2022. "Estimating the human equivalent weight by applying the quarter-power law of allometry to humanity," OSF Preprints 7eq6x, Center for Open Science.
    14. Amsalu Abich & Mesele Negash & Asmamaw Alemu & Temesgen Gashaw, 2022. "Aboveground Biomass Models in the Combretum-Terminalia Woodlands of Ethiopia: Testing Species and Site Variation Effects," Land, MDPI, vol. 11(6), pages 1-23, May.
    15. Zhang, Yuwen & Ding, Changjun & Liu, Yan & Li, Shan & Li, Ximeng & Xi, Benye & Duan, Jie, 2023. "Xylem anatomical and hydraulic traits vary within crown but not respond to water and nitrogen addition in Populus tomentosa," Agricultural Water Management, Elsevier, vol. 278(C).
    16. Łukasz Radosz & Damian Chmura & Dariusz Prostański & Gabriela Woźniak, 2023. "The Soil Respiration of Coal Mine Heaps’ Novel Ecosystems in Relation to Biomass and Biotic Parameters," Energies, MDPI, vol. 16(20), pages 1-24, October.
    17. GANIO-MEGO, Joe, 2022. "Long term world human population, lifespan and GDP growth model based on the in-caput-evolution theory and its impact on the carrying capacity," OSF Preprints dm3jn, Center for Open Science.
    18. Gavrikov, Vladimir L., 2015. "Whether respiration in trees can scale isometrically with bole surface area: A test of hypothesis," Ecological Modelling, Elsevier, vol. 312(C), pages 318-321.
    19. Lovelli, S. & Perniola, M. & Arcieri, M. & Rivelli, A.R. & Di Tommaso, T., 2008. "Water use assessment in muskmelon by the Penman-Monteith "one-step" approach," Agricultural Water Management, Elsevier, vol. 95(10), pages 1153-1160, October.
    20. Maire, Vincent & Soussana, Jean-François & Gross, Nicolas & Bachelet, Bruno & Pagès, Loïc & Martin, Raphaël & Reinhold, Tanja & Wirth, Christian & Hill, David, 2013. "Plasticity of plant form and function sustains productivity and dominance along environment and competition gradients. A modeling experiment with Gemini," Ecological Modelling, Elsevier, vol. 254(C), pages 80-91.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:114:y:2012:i:c:p:67-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.