IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0045317.html
   My bibliography  Save this article

Dynamic Scaling in the Growth of a Non-Branching Plant, Cardiocrinum cordatum

Author

Listed:
  • Kohei Koyama
  • Yoshiki Hidaka
  • Masayuki Ushio

Abstract

We investigated whole-plant leaf area in relation to ontogenetic variation in leaf-size for a forest perennial herb, Cardiocrinum cordatum. The 200-fold ontogenetic variability in C. cordatum leaf area followed a power-law dependence on total leaf number, a measure of developmental stage. When we normalized for plant size, the function describing the size of single leaves along the stem was similar among different-sized plants, implying that the different-sized canopies observed at different times in the growth trajectory were fundamentally similar to each other. We conclude that the growth trajectory of a population of C. cordatum plant leaves obeyed a dynamic scaling law, the first reported for a growth trajectory at the whole-plant level.

Suggested Citation

  • Kohei Koyama & Yoshiki Hidaka & Masayuki Ushio, 2012. "Dynamic Scaling in the Growth of a Non-Branching Plant, Cardiocrinum cordatum," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-5, September.
  • Handle: RePEc:plo:pone00:0045317
    DOI: 10.1371/journal.pone.0045317
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0045317
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0045317&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0045317?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Geoffrey B. West & James H. Brown & Brian J. Enquist, 1999. "A general model for the structure and allometry of plant vascular systems," Nature, Nature, vol. 400(6745), pages 664-667, August.
    2. Brian J. Enquist & Andrew J. Kerkhoff & Scott C. Stark & Nathan G. Swenson & Megan C. McCarthy & Charles A. Price, 2007. "A general integrative model for scaling plant growth, carbon flux, and functional trait spectra," Nature, Nature, vol. 449(7159), pages 218-222, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Watt, Michael S. & Kirschbaum, Miko U.F., 2011. "Moving beyond simple linear allometric relationships between tree height and diameter," Ecological Modelling, Elsevier, vol. 222(23), pages 3910-3916.
    2. Zhiqiang Wang & Heng Huang & Han Wang & Josep Peñuelas & Jordi Sardans & Ülo Niinemets & Karl J. Niklas & Yan Li & Jiangbo Xie & Ian J. Wright, 2022. "Leaf water content contributes to global leaf trait relationships," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Hongying Li & Zhongwen Huang & Junyi Gai & Song Wu & Yanru Zeng & Qin Li & Rongling Wu, 2007. "A Conceptual Framework for Mapping Quantitative Trait Loci Regulating Ontogenetic Allometry," PLOS ONE, Public Library of Science, vol. 2(11), pages 1-10, November.
    4. Eglin, Thomas & Francois, Christophe & Michelot, Alice & Delpierre, Nicolas & Damesin, Claire, 2010. "Linking intra-seasonal variations in climate and tree-ring δ13C: A functional modelling approach," Ecological Modelling, Elsevier, vol. 221(15), pages 1779-1797.
    5. Baiamonte, Giorgio & Motisi, Antonio, 2020. "Analytical approach extending the Granier method to radial sap flow patterns," Agricultural Water Management, Elsevier, vol. 231(C).
    6. Xu, Meng & Jiang, Mengke & Wang, Hua-Feng, 2021. "Integrating metabolic scaling variation into the maximum entropy theory of ecology explains Taylor's law for individual metabolic rate in tropical forests," Ecological Modelling, Elsevier, vol. 455(C).
    7. Hannah Capes & Robert J. Maillardet & Thomas G. Baker & Christopher J. Weston & Don McGuire & Ian C. Dumbrell & Andrew P. Robinson, 2017. "The Allometric Quarter-Power Scaling Model and Its Applicability to Grand Fir and Eucalyptus Trees," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 562-584, December.
    8. Guan-Zhi Liu & Kai Zhao & Shi-Qi Zhang & Yu-Mei Liang & Yong-Jie Yue & Guo-Hou Liu & Fu-Cang Qin, 2024. "Biomass Allocation and Allometric Relationship of Salix gordejevii Branches in Sandy Habitats Heterogeneity in Northern China," Sustainability, MDPI, vol. 16(13), pages 1-17, June.
    9. GANIO-MEGO, Joe, 2022. "The instant and historical Preston curves: allometry quarter-power law valid for the humans," SocArXiv y8rbt, Center for Open Science.
    10. Denise Pumain & Céline Rozenblat, 2019. "Two metropolisation gradients in the European system of cities revealed by scaling laws," Environment and Planning B, , vol. 46(9), pages 1645-1662, November.
    11. Herberich, Maximiliane Marion & Gayler, Sebastian & Anand, Madhur & Tielbörger, Katja, 2017. "Hydrological niche segregation of plant functional traits in an individual-based model," Ecological Modelling, Elsevier, vol. 356(C), pages 14-24.
    12. GANIO-MEGO, Joe, 2022. "Estimating the human equivalent weight by applying the quarter-power law of allometry to humanity," OSF Preprints 7eq6x, Center for Open Science.
    13. Amsalu Abich & Mesele Negash & Asmamaw Alemu & Temesgen Gashaw, 2022. "Aboveground Biomass Models in the Combretum-Terminalia Woodlands of Ethiopia: Testing Species and Site Variation Effects," Land, MDPI, vol. 11(6), pages 1-23, May.
    14. Kihachiro Kikuzawa & Kenji Seiwa & Martin J Lechowicz, 2013. "Leaf Longevity as a Normalization Constant in Allometric Predictions of Plant Production," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-1, December.
    15. Zhang, Yuwen & Ding, Changjun & Liu, Yan & Li, Shan & Li, Ximeng & Xi, Benye & Duan, Jie, 2023. "Xylem anatomical and hydraulic traits vary within crown but not respond to water and nitrogen addition in Populus tomentosa," Agricultural Water Management, Elsevier, vol. 278(C).
    16. Łukasz Radosz & Damian Chmura & Dariusz Prostański & Gabriela Woźniak, 2023. "The Soil Respiration of Coal Mine Heaps’ Novel Ecosystems in Relation to Biomass and Biotic Parameters," Energies, MDPI, vol. 16(20), pages 1-24, October.
    17. GANIO-MEGO, Joe, 2022. "Long term world human population, lifespan and GDP growth model based on the in-caput-evolution theory and its impact on the carrying capacity," OSF Preprints dm3jn, Center for Open Science.
    18. Gavrikov, Vladimir L., 2015. "Whether respiration in trees can scale isometrically with bole surface area: A test of hypothesis," Ecological Modelling, Elsevier, vol. 312(C), pages 318-321.
    19. Hunt, Allen G. & Faybishenko, Boris & Powell, Thomas L., 2020. "A new phenomenological model to describe root-soil interactions based on percolation theory," Ecological Modelling, Elsevier, vol. 433(C).
    20. Maire, Vincent & Soussana, Jean-François & Gross, Nicolas & Bachelet, Bruno & Pagès, Loïc & Martin, Raphaël & Reinhold, Tanja & Wirth, Christian & Hill, David, 2013. "Plasticity of plant form and function sustains productivity and dominance along environment and competition gradients. A modeling experiment with Gemini," Ecological Modelling, Elsevier, vol. 254(C), pages 80-91.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0045317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.