IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v101y2011i1p52-61.html
   My bibliography  Save this article

The dynamics of groundwater table and salinity over 17 years in Khorezm

Author

Listed:
  • Ibrakhimov, Mirzakhayot
  • Martius, Christopher
  • Lamers, J.P.A.
  • Tischbein, Bernhard

Abstract

Salinization of irrigated agricultural land threatens ecological sustainability and livelihoods of people. Salinization is especially severe in the dry lowlands world-wide and in Central Asia where large amounts of salts accumulated in the soil profile, originating from shallow saline groundwater (GW). Analysis of the unique dataset of 2000 monitoring wells of GW table and salinity in lowland Khorezm region of Uzbekistan over the period of 1990 till 2006 showed shallow GW levels of 1.1–1.4m (±0.48–0.66m) at start of leaching periods and 0.9–1.4 (±0.43–0.63m) in July during the annual growing seasons. While leaching efficiency is decreased, shallow GW in July is far above the optimum levels of 1.4–1.5m. The effects of topography, soil texture, and irrigation and drainage networks were found to favor shallow GW forced by excessive water diversion. The drainage network, which is seen by many specialists as underdeveloped and its improvement necessary to arrest unacceptable GW levels, is being used under its full capacity. The solution to alleviate land degradation is not only an improved drainage, but better controlled and more flexible water management.

Suggested Citation

  • Ibrakhimov, Mirzakhayot & Martius, Christopher & Lamers, J.P.A. & Tischbein, Bernhard, 2011. "The dynamics of groundwater table and salinity over 17 years in Khorezm," Agricultural Water Management, Elsevier, vol. 101(1), pages 52-61.
  • Handle: RePEc:eee:agiwat:v:101:y:2011:i:1:p:52-61
    DOI: 10.1016/j.agwat.2011.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377411002435
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2011.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kahlown, M.A. & Ashraf, M. & Zia-ul-Haq, 2005. "Effect of shallow groundwater table on crop water requirements and crop yields," Agricultural Water Management, Elsevier, vol. 76(1), pages 24-35, July.
    2. Qureshi, A.S. & McCornick, P.G. & Qadir, M. & Aslam, Z., 2008. "Managing salinity and waterlogging in the Indus Basin of Pakistan," Agricultural Water Management, Elsevier, vol. 95(1), pages 1-10, January.
    3. Zhang, Yongqiang & Kendy, Eloise & Qiang, Yu & Changming, Liu & Yanjun, Shen & Hongyong, Sun, 2004. "Effect of soil water deficit on evapotranspiration, crop yield, and water use efficiency in the North China Plain," Agricultural Water Management, Elsevier, vol. 64(2), pages 107-122, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Umirzakov, Gulomjon & Barthold, F. & Schneider, K. & Forkutsa, I. & Breuer, L. & Stulina, G. & Dukhovny, V. & Frede, H.-G., 2013. "Estimation of phreatic evaporation in irrigation agriculture using stable isotopes," International Conference and Young Researchers Forum - Natural Resource Use in Central Asia: Institutional Challenges and the Contribution of Capacity Building 159226, University of Giessen (JLU Giessen), Center for International Development and Environmental Research.
    2. Hongfang Li & Jian Wang & Hu Liu & Zhanmin Wei & Henglu Miao, 2022. "Quantitative Analysis of Temporal and Spatial Variations of Soil Salinization and Groundwater Depth along the Yellow River Saline–Alkali Land," Sustainability, MDPI, vol. 14(12), pages 1-13, June.
    3. Guanfang Sun & Yan Zhu & Zhaoliang Gao & Jinzhong Yang & Zhongyi Qu & Wei Mao & Jingwei Wu, 2022. "Spatiotemporal Patterns and Key Driving Factors of Soil Salinity in Dry and Wet Years in an Arid Agricultural Area with Shallow Groundwater Table," Agriculture, MDPI, vol. 12(8), pages 1-17, August.
    4. Dong, Shide & Wan, Shuqin & Kang, Yaohu & Li, Xiaobin, 2021. "Establishing an ecological forest system of salt-tolerant plants in heavily saline wasteland using the drip-irrigation reclamation method," Agricultural Water Management, Elsevier, vol. 245(C).
    5. Wichelns, Dennis & Qadir, Manzoor, 2015. "Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater," Agricultural Water Management, Elsevier, vol. 157(C), pages 31-38.
    6. Singh, Ajay, 2019. "Poor-drainage-induced salinization of agricultural lands: Management through structural measures," Land Use Policy, Elsevier, vol. 82(C), pages 457-463.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Xiaoyu & Bai, Yining & Huo, Zailin & Xu, Xu & Huang, Guanhua & Xia, Yuhong & Steenhuis, Tammo S., 2017. "Deficit irrigation enhances contribution of shallow groundwater to crop water consumption in arid area," Agricultural Water Management, Elsevier, vol. 185(C), pages 116-125.
    2. Xiong, Lvyang & Xu, Xu & Engel, Bernard & Xiong, Yunwu & Huang, Quanzhong & Huang, Guanhua, 2021. "Predicting agroecosystem responses to identify appropriate water-saving management in arid irrigated regions with shallow groundwater: Realization on a regional scale," Agricultural Water Management, Elsevier, vol. 247(C).
    3. Muhammad Amin & Mobushir Riaz Khan & Sher Shah Hassan & Muhammad Imran & Muhammad Hanif & Irfan Ahmad Baig, 2023. "Determining satellite-based evapotranspiration product and identifying relationship with other observed data in Punjab, Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 23-39, January.
    4. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    5. Kukal, M.S. & Irmak, S., 2020. "Impact of irrigation on interannual variability in United States agricultural productivity," Agricultural Water Management, Elsevier, vol. 234(C).
    6. Yuan, Chengfu & Feng, Shaoyuan & Huo, Zailin & Ji, Quanyi, 2019. "Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 212(C), pages 424-432.
    7. Benedykt Pepliński & Wawrzyniec Czubak, 2021. "The Influence of Opencast Lignite Mining Dehydration on Plant Production—A Methodological Study," Energies, MDPI, vol. 14(7), pages 1-29, March.
    8. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
    9. Dianxi Zhang & Muhammad Safdar Sial & Naveed Ahmad & António José Filipe & Phung Anh Thu & Malik Zia-Ud-Din & António Bento Caleiro, 2020. "Water Scarcity and Sustainability in an Emerging Economy: A Management Perspective for Future," Sustainability, MDPI, vol. 13(1), pages 1-10, December.
    10. Talebnejad, R. & Sepaskhah, A.R., 2015. "Effect of deficit irrigation and different saline groundwater depths on yield and water productivity of quinoa," Agricultural Water Management, Elsevier, vol. 159(C), pages 225-238.
    11. Li, Jinpeng & Wang, Yunqi & Zhang, Meng & Liu, Yang & Xu, Xuexin & Lin, Gang & Wang, Zhimin & Yang, Youming & Zhang, Yinghua, 2019. "Optimized micro-sprinkling irrigation scheduling improves grain yield by increasing the uptake and utilization of water and nitrogen during grain filling in winter wheat," Agricultural Water Management, Elsevier, vol. 211(C), pages 59-69.
    12. Simons, G.W.H. & Bastiaanssen, W.G.M. & Cheema, M.J.M. & Ahmad, B. & Immerzeel, W.W., 2020. "A novel method to quantify consumed fractions and non-consumptive use of irrigation water: Application to the Indus Basin Irrigation System of Pakistan," Agricultural Water Management, Elsevier, vol. 236(C).
    13. Peake, A.S. & Carberry, P.S. & Raine, S.R. & Gett, V. & Smith, R.J., 2016. "An alternative approach to whole-farm deficit irrigation analysis: Evaluating the risk-efficiency of wheat irrigation strategies in sub-tropical Australia," Agricultural Water Management, Elsevier, vol. 169(C), pages 61-76.
    14. Gou, Qiqi & Zhu, Yonghua & Horton, Robert & Lü, Haishen & Wang, Zhenlong & Su, Jianbin & Cui, Chenyun & Zhang, Haoqiang & Wang, Xiaoyi & Zheng, Jingyao & Yuan, Fei, 2020. "Effect of climate change on the contribution of groundwater to the root zone of winter wheat in the Huaibei Plain of China," Agricultural Water Management, Elsevier, vol. 240(C).
    15. Vincent Pelletier & Jacques Gallichand & Silvio Gumiere & Steeve Pepin & Jean Caron, 2015. "Water Table Control for Increasing Yield and Saving Water in Cranberry Production," Sustainability, MDPI, vol. 7(8), pages 1-18, August.
    16. Fang, Q.X. & Ma, L. & Green, T.R. & Yu, Q. & Wang, T.D. & Ahuja, L.R., 2010. "Water resources and water use efficiency in the North China Plain: Current status and agronomic management options," Agricultural Water Management, Elsevier, vol. 97(8), pages 1102-1116, August.
    17. Fazlullah Akhtar & Bernhard Tischbein & Usman Awan, 2013. "Optimizing Deficit Irrigation Scheduling Under Shallow Groundwater Conditions in Lower Reaches of Amu Darya River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3165-3178, June.
    18. Xie, Tao & Liu, Xinhui & Sun, Tao, 2011. "The effects of groundwater table and flood irrigation strategies on soil water and salt dynamics and reed water use in the Yellow River Delta, China," Ecological Modelling, Elsevier, vol. 222(2), pages 241-252.
    19. Sergio M. Vicente‐Serrano & Tim R. McVicar & Diego G. Miralles & Yuting Yang & Miquel Tomas‐Burguera, 2020. "Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    20. Devkota, M. & Gupta, R.K. & Martius, C. & Lamers, J.P.A. & Devkota, K.P. & Sayre, K.D. & Vlek, P.L.G., 2015. "Soil salinity management on raised beds with different furrow irrigation modes in salt-affected lands," Agricultural Water Management, Elsevier, vol. 152(C), pages 243-250.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:101:y:2011:i:1:p:52-61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.