IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v221y2024ics0308521x24002622.html
   My bibliography  Save this article

Classifying and explaining Walloon dairy farms in terms of sustainable food security using a multiple criteria decision making method

Author

Listed:
  • Battheu-Noirfalise, Caroline
  • Mertens, Alexandre
  • Faivre, Arno
  • Charles, Catherine
  • Dogot, Thomas
  • Stilmant, Didier
  • Beckers, Yves
  • Froidmont, Eric

Abstract

Land intensive grass-based dairy systems have the highest contribution to food security but may have a higher impact on the environment. The aim of this study was to classify dairy farms in terms of sustainable contribution to food security and analyze the farm characteristics related to these performances. To this end, we performed a sustainability assessment by calculating 17 indicators using FADN data of 209 Walloon (Belgium) dairy farms. Using the Analytical Hierarchy Process, 25 stakeholders of the Walloon milk upstream sector defined preference weights for the indicators. Farms were ranked using ELECTRE III using the mean weights for the dairy sector and grouped in four sustainability groups. A canonical discriminant analysis was performed on farm characteristics. Farm characteristics that negatively impact sustainability are the use of maize silage, the use of concentrates and the CP-content of these concentrates, the farm size, and the number of female followers per cow. The farm characteristic that positively impacts sustainability is the grassland yield. Milk production per cow, age at first calving, and calving interval have a negligible effect on sustainability. These results suggest that feed conversion efficiency is not a main driver of sustainability but rather that specific production means and practices play a more significant role in determining sustainability. Consequently, we argue that the search for efficiency that has been promoted to increase the sustainability of food systems should be placed in a systemic perspective in order to avoid trade-offs with other aspects and that, in general, an increase in efficiency is positively linked with sustainability when achieved through knowledge and technicity rather than by the addition of external inputs.

Suggested Citation

  • Battheu-Noirfalise, Caroline & Mertens, Alexandre & Faivre, Arno & Charles, Catherine & Dogot, Thomas & Stilmant, Didier & Beckers, Yves & Froidmont, Eric, 2024. "Classifying and explaining Walloon dairy farms in terms of sustainable food security using a multiple criteria decision making method," Agricultural Systems, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:agisys:v:221:y:2024:i:c:s0308521x24002622
    DOI: 10.1016/j.agsy.2024.104112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X24002622
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2024.104112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paolo Paruolo & Michaela Saisana & Andrea Saltelli, 2013. "Ratings and rankings: voodoo or science?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 176(3), pages 609-634, June.
    2. Hans Vrolijk & Krijn Poppe, 2021. "Cost of Extending the Farm Accountancy Data Network to the Farm Sustainability Data Network: Empirical Evidence," Sustainability, MDPI, vol. 13(15), pages 1-13, July.
    3. Thomas L. Saaty & Luis G. Vargas, 2006. "Decision Making with the Analytic Network Process," International Series in Operations Research and Management Science, Springer, number 978-0-387-33987-0.
    4. Masako Numata & Masahiro Sugiyama & Gento Mogi, 2020. "Barrier Analysis for the Deployment of Renewable-Based Mini-Grids in Myanmar Using the Analytic Hierarchy Process (AHP)," Energies, MDPI, vol. 13(6), pages 1-16, March.
    5. Giancarlo Moschini, 1988. "The Cost Structure of Ontario Dairy Farms: A Microeconometric Analysis," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 36(2), pages 187-206, July.
    6. Vlada VITUNSKIENE & Vida DABKIENE, 2016. "Framework for assessing the farm relative sustainability: a Lithuanian case study," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 62(3), pages 134-148.
    7. Michael P. Niemira & Thomas L. Saaty, 2006. "An Analytic Network Process Model for Financial-Crisis Forecasting," International Series in Operations Research & Management Science, in: Decision Making with the Analytic Network Process, chapter 0, pages 45-61, Springer.
    8. Mosnier, Claire & Jarousse, Anne & Madrange, Pauline & Balouzat, Jimmy & Guillier, Maëva & Pirlo, Giacomo & Mertens, Alexandre & ORiordan, Edward & Pahmeyer, Christoph & Hennart, Sylvain & Legein, Lou, 2021. "Evaluation of the contribution of 16 European beef production systems to food security," Agricultural Systems, Elsevier, vol. 190(C).
    9. Thomas L. Saaty, 2006. "The Analytic Network Process," International Series in Operations Research & Management Science, in: Decision Making with the Analytic Network Process, chapter 0, pages 1-26, Springer.
    10. Margherita Masi & Yari Vecchio & Gregorio Pauselli & Jorgelina Di Pasquale & Felice Adinolfi, 2021. "A Typological Classification for Assessing Farm Sustainability in the Italian Bovine Dairy Sector," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    11. Rogers, Martin & Bruen, Michael, 1998. "Choosing realistic values of indifference, preference and veto thresholds for use with environmental criteria within ELECTRE," European Journal of Operational Research, Elsevier, vol. 107(3), pages 542-551, June.
    12. Saaty, Thomas L., 2003. "Decision-making with the AHP: Why is the principal eigenvector necessary," European Journal of Operational Research, Elsevier, vol. 145(1), pages 85-91, February.
    13. Ernest H. Forman & Saul I. Gass, 2001. "The Analytic Hierarchy Process---An Exposition," Operations Research, INFORMS, vol. 49(4), pages 469-486, August.
    14. Fontana, Veronika & Radtke, Anna & Bossi Fedrigotti, Valérie & Tappeiner, Ulrike & Tasser, Erich & Zerbe, Stefan & Buchholz, Thomas, 2013. "Comparing land-use alternatives: Using the ecosystem services concept to define a multi-criteria decision analysis," Ecological Economics, Elsevier, vol. 93(C), pages 128-136.
    15. Roy, B. & Figueira, J.R. & Almeida-Dias, J., 2014. "Discriminating thresholds as a tool to cope with imperfect knowledge in multiple criteria decision aiding: Theoretical results and practical issues," Omega, Elsevier, vol. 43(C), pages 9-20.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oryani, Bahareh & Koo, Yoonmo & Rezania, Shahabaldin & Shafiee, Afsaneh, 2021. "Barriers to renewable energy technologies penetration: Perspective in Iran," Renewable Energy, Elsevier, vol. 174(C), pages 971-983.
    2. Oliveira, Inês A.S.J. & Carayannis, Elias G. & Ferreira, Fernando A.F. & Jalali, Marjan S. & Carlucci, Daniela & Ferreira, João J.M., 2018. "Constructing home safety indices for strategic planning in residential real estate: A socio-technical approach," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 67-77.
    3. Keon Chul Park & Dong-Hee Shin, 2017. "Security assessment framework for IoT service," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 64(1), pages 193-209, January.
    4. Wu, Chen-Fa & Wang, Hsiao-Hsuan & Chen, Szu-Hung & Trac, Luu Van Thong, 2024. "Assessing the efficiency of bird habitat conservation strategies in farmland ecosystems," Ecological Modelling, Elsevier, vol. 492(C).
    5. Ergu, Daji & Kou, Gang & Peng, Yi & Shi, Yong, 2011. "A simple method to improve the consistency ratio of the pair-wise comparison matrix in ANP," European Journal of Operational Research, Elsevier, vol. 213(1), pages 246-259, August.
    6. Mahmaod Alrawad & Abdalwali Lutfi & Mohammed Amin Almaiah & Adi Alsyouf & Hussin Mostafa Arafa & Yasser Soliman & Ibrahim A. Elshaer, 2023. "A Novel Framework of Public Risk Assessment Using an Integrated Approach Based on AHP and Psychometric Paradigm," Sustainability, MDPI, vol. 15(13), pages 1-17, June.
    7. Jamali, Narjes & Feylizadeh, Mohammad Reza & Liu, Peide, 2021. "Prioritization of aircraft maintenance unit strategies using fuzzy Analytic Network Process: A case study," Journal of Air Transport Management, Elsevier, vol. 93(C).
    8. Wolfgang Ossadnik & Stefanie Schinke & Ralf H. Kaspar, 2016. "Group Aggregation Techniques for Analytic Hierarchy Process and Analytic Network Process: A Comparative Analysis," Group Decision and Negotiation, Springer, vol. 25(2), pages 421-457, March.
    9. Ali Aghazadeh Ardebili & Elio Padoano & Antonella Longo & Antonio Ficarella, 2022. "The Risky-Opportunity Analysis Method (ROAM) to Support Risk-Based Decisions in a Case-Study of Critical Infrastructure Digitization," Risks, MDPI, vol. 10(3), pages 1-22, February.
    10. Babak Daneshvar Rouyendegh & Asil Oztekin & Joseph Ekong & Ali Dag, 2019. "Measuring the efficiency of hospitals: a fully-ranking DEA–FAHP approach," Annals of Operations Research, Springer, vol. 278(1), pages 361-378, July.
    11. Afsaneh Afzali & Soheil Sabri & M. Rashid & Jamal Mohammad Vali Samani & Ahmad Ludin, 2014. "Inter-Municipal Landfill Site Selection Using Analytic Network Process," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2179-2194, June.
    12. Baffoe, Gideon, 2019. "Exploring the utility of Analytic Hierarchy Process (AHP) in ranking livelihood activities for effective and sustainable rural development interventions in developing countries," Evaluation and Program Planning, Elsevier, vol. 72(C), pages 197-204.
    13. Ravi Kumar Gedela & K. Krishna Mohan & V. Kamakshi Prasad, 2018. "Application of BOCR models in service oriented architecture (SOA): study on model validation through quantification for QoS considerations," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(6), pages 1346-1354, December.
    14. Jing-Wei Liu & Che-Wei Chang & Yao-Ji Wang & Yi-Hui Liu, 2022. "Constructing a Decision Model for Health Club Members to Purchase Coaching Programs during the COVID-19 Epidemic," Sustainability, MDPI, vol. 14(20), pages 1-13, October.
    15. Babak Daneshvar Rouyendegh & Kazim Topuz & Ali Dag & Asil Oztekin, 2019. "An AHP-IFT Integrated Model for Performance Evaluation of E-Commerce Web Sites," Information Systems Frontiers, Springer, vol. 21(6), pages 1345-1355, December.
    16. Starr, Morgan & Joshi, Omkar & Will, Rodney E. & Zou, Chris B., 2019. "Perceptions regarding active management of the Cross-timbers forest resources of Oklahoma, Texas, and Kansas: A SWOT-ANP analysis," Land Use Policy, Elsevier, vol. 81(C), pages 523-530.
    17. J. Hummel & John Bridges & Maarten IJzerman, 2014. "Group Decision Making with the Analytic Hierarchy Process in Benefit-Risk Assessment: A Tutorial," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 7(2), pages 129-140, June.
    18. Thomas Saaty & Luis Vargas, 2012. "The possibility of group choice: pairwise comparisons and merging functions," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 38(3), pages 481-496, March.
    19. Höfer, Tim & Sunak, Yasin & Siddique, Hafiz & Madlener, Reinhard, 2016. "Wind farm siting using a spatial Analytic Hierarchy Process approach: A case study of the Städteregion Aachen," Applied Energy, Elsevier, vol. 163(C), pages 222-243.
    20. Seyhan Sipahi Author_Email: sipahi@istanbul.edu.tr & Erdal Tekarslan & Aysegul Karaeminogullari, 2011. "Multicriteria Approach For Prioritizing Objectives In A Strategic Plan: A Case Study From Higher Education," 2nd International Conference on Business and Economic Research (2nd ICBER 2011) Proceeding 2011-165, Conference Master Resources.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:221:y:2024:i:c:s0308521x24002622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.