IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v217y2024ics0308521x24001008.html
   My bibliography  Save this article

Co-designing a landscape experiment to investigate diversified cropping systems

Author

Listed:
  • Grahmann, Kathrin
  • Reckling, Moritz
  • Hernández-Ochoa, Ixchel
  • Donat, Marco
  • Bellingrath-Kimura, Sonoko
  • Ewert, Frank

Abstract

Intensive food and feed production in sole-cropped, large fields with high fertilizer and pesticide inputs to achieve high yields, has contributed to detrimental environmental impacts. To move towards more sustainable agricultural landscapes, cropping system diversification has been suggested as a promising practice for which the use of digital technologies could be potentially beneficial. Understanding the impact of diversified, newly arranged cropping systems and their management requires long-term experimental data at the landscape scale and practical experiences in using digital technologies which are hardly available. Experimental platforms in an agricultural landscape setup with farmers' involvement could meet such demands but have not been set up in many regions nor has the process of designing such platforms been described systematically.

Suggested Citation

  • Grahmann, Kathrin & Reckling, Moritz & Hernández-Ochoa, Ixchel & Donat, Marco & Bellingrath-Kimura, Sonoko & Ewert, Frank, 2024. "Co-designing a landscape experiment to investigate diversified cropping systems," Agricultural Systems, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:agisys:v:217:y:2024:i:c:s0308521x24001008
    DOI: 10.1016/j.agsy.2024.103950
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X24001008
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2024.103950?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael Schirrmann & Monika Joschko & Robin Gebbers & Eckart Kramer & Mirjam Zörner & Dietmar Barkusky & Jens Timmer, 2016. "Proximal Soil Sensing – A Contribution for Species Habitat Distribution Modelling of Earthworms in Agricultural Soils?," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-21, June.
    2. Quentin Toffolini & Mathieu Capitaine & Mourad Hannachi & Marianne Cerf, 2021. "Implementing agricultural living labs that renew actors’ roles within existing innovation systems: A case study in France [La mise en œuvre de living labs qui renouvellent les rôles des acteurs au ," Post-Print hal-03412682, HAL.
    3. Kirchweger, Stefan & Clough, Yann & Kapfer, Martin & Steffan-Dewenter, Ingolf & Kantelhardt, Jochen, 2020. "Do improved pollination services outweigh farm-economic disadvantages of working in small-structured agricultural landscapes? – Development and application of a bio-economic model," Ecological Economics, Elsevier, vol. 169(C).
    4. Chris McPhee & Margaret Bancerz & Muriel Mambrini-Doudet & François Chrétien & Christian Huyghe & Javier Gracia-Garza, 2021. "The Defining Characteristics of Agroecosystem Living Labs," Sustainability, MDPI, vol. 13(4), pages 1-25, February.
    5. Arne Hallam, 1991. "Economies of Size and Scale in Agriculture: An Interpretive Review of Empirical Measurement," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 13(1), pages 155-172.
    6. Wolfert, Sjaak & Ge, Lan & Verdouw, Cor & Bogaardt, Marc-Jeroen, 2017. "Big Data in Smart Farming – A review," Agricultural Systems, Elsevier, vol. 153(C), pages 69-80.
    7. Rossing, Walter A.H. & Albicette, Maria Marta & Aguerre, Veronica & Leoni, Carolina & Ruggia, Andrea & Dogliotti, Santiago, 2021. "Crafting actionable knowledge on ecological intensification: Lessons from co-innovation approaches in Uruguay and Europe," Agricultural Systems, Elsevier, vol. 190(C).
    8. Juventia, Stella D. & Selin Norén, Isabella L.M. & van Apeldoorn, Dirk F. & Ditzler, Lenora & Rossing, Walter A.H., 2022. "Spatio-temporal design of strip cropping systems," Agricultural Systems, Elsevier, vol. 201(C).
    9. Prost, Lorène & Reau, Raymond & Paravano, Laurette & Cerf, Marianne & Jeuffroy, Marie-Hélène, 2018. "Designing agricultural systems from invention to implementation: the contribution of agronomy. Lessons from a case study," Agricultural Systems, Elsevier, vol. 164(C), pages 122-132.
    10. Al-Amin, A.K.M. Abdullah & Lowenberg-DeBoer, James & Franklin, Kit & Behrendt, Karl, 2021. "Economic Implications of Field Size for Autonomous Arable Crop Equipment," Land, Farm & Agribusiness Management Department 316595, Harper Adams University, Land, Farm & Agribusiness Management Department.
    11. Barnes, A.P. & Soto, I. & Eory, V. & Beck, B. & Balafoutis, A. & Sánchez, B. & Vangeyte, J. & Fountas, S. & van der Wal, T. & Gómez-Barbero, M., 2019. "Exploring the adoption of precision agricultural technologies: A cross regional study of EU farmers," Land Use Policy, Elsevier, vol. 80(C), pages 163-174.
    12. Justus Von Geibler & Lorenz Erdmann & Christa Liedtke & Holger Rohn & Matthias Stabe & Simon Berner & Kristin Leismann & Kathrin Schnalzer & Katharina Kennedy, 2014. "Exploring the Potential of a German Living Lab Research Infrastructure for the Development of Low Resource Products and Services," Resources, MDPI, vol. 3(3), pages 1-24, September.
    13. Al-Amin, A.K.M. Abdullah & Lowenberg-DeBoer, James & Franklin, Kit & Behrendt, Karl, 2021. "Economic Implications of Field Size for Autonomous Arable Crop Equipment," Agri-Tech Economics Papers 316595, Harper Adams University, Land, Farm & Agribusiness Management Department.
    14. Jänicke, Clemens & Goddard, Adam & Stein, Susanne & Steinmann, Horst-Henning & Lakes, Tobia & Nendel, Claas & Müller, Daniel, 2022. "Field-level land-use data reveal heterogeneous crop sequences with distinct regional differences in Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 1-12.
    15. Rose, David Christian & Wheeler, Rebecca & Winter, Michael & Lobley, Matt & Chivers, Charlotte-Anne, 2021. "Agriculture 4.0: Making it work for people, production, and the planet," Land Use Policy, Elsevier, vol. 100(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert Finger, 2023. "Digital innovations for sustainable and resilient agricultural systems," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 50(4), pages 1277-1309.
    2. Toffolini, Quentin & Hannachi, Mourad & Capitaine, Mathieu & Cerf, Marianne, 2023. "Ideal-types of experimentation practices in agricultural Living Labs: Various appropriations of an open innovation model," Agricultural Systems, Elsevier, vol. 208(C).
    3. Abdullah Al-Amin, A.K.M & Lowenberg‑DeBoer, James & Franklin, K. & Behrendt, K., 2022. "Economics of Field Size for Autonomous Crop Machines," Land, Farm & Agribusiness Management Department 322755, Harper Adams University, Land, Farm & Agribusiness Management Department.
    4. Osrof, Hazem Yusuf & Tan, Cheng Ling & Angappa, Gunasekaran & Yeo, Sook Fern & Tan, Kim Hua, 2023. "Adoption of smart farming technologies in field operations: A systematic review and future research agenda," Technology in Society, Elsevier, vol. 75(C).
    5. Margherita Masi & Marcello Rosa & Yari Vecchio & Luca Bartoli & Felice Adinolfi, 2022. "The long way to innovation adoption: insights from precision agriculture," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 10(1), pages 1-17, December.
    6. Ingram, Julie & Maye, Damian & Bailye, Clive & Barnes, Andrew & Bear, Christopher & Bell, Matthew & Cutress, David & Davies, Lynfa & de Boon, Auvikki & Dinnie, Liz & Gairdner, Julian & Hafferty, Caitl, 2022. "What are the priority research questions for digital agriculture?," Land Use Policy, Elsevier, vol. 114(C).
    7. Abdullah Al-Amin, A.K.M & Lowenberg‑DeBoer, James & Franklin, K. & Behrendt, K., 2022. "Economics of Field Size for Autonomous Crop Machines," Agri-Tech Economics Papers 322755, Harper Adams University, Land, Farm & Agribusiness Management Department.
    8. Oksana Hrynevych & Miguel Blanco Canto & Mercedes Jiménez García, 2022. "Tendencies of Precision Agriculture in Ukraine: Disruptive Smart Farming Tools as Cooperation Drivers," Agriculture, MDPI, vol. 12(5), pages 1-15, May.
    9. Emily Duncan & Alesandros Glaros & Dennis Z. Ross & Eric Nost, 2021. "New but for whom? Discourses of innovation in precision agriculture," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 38(4), pages 1181-1199, December.
    10. Vanishree Pabalkar & Rashmy Moray, 2019. "Implication of technology on economic progress of farmers: a case of India," Asian Journal of Agriculture and rural Development, Asian Economic and Social Society, vol. 9(2), pages 179-193, December.
    11. Madhu Khanna, 2021. "Digital Transformation of the Agricultural Sector: Pathways, Drivers and Policy Implications," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(4), pages 1221-1242, December.
    12. Klingenberg, Cristina Orsolin & Valle Antunes Júnior, José Antônio & Müller-Seitz, Gordon, 2022. "Impacts of digitalization on value creation and capture: Evidence from the agricultural value chain," Agricultural Systems, Elsevier, vol. 201(C).
    13. Prost, Lorène, 2021. "Revitalizing agricultural sciences with design sciences," Agricultural Systems, Elsevier, vol. 193(C).
    14. Rossing, Walter A.H. & Dogliotti, Santiago & Martin, Guillaume, 2023. "Sustainability transitions in the making in agroecosystems: Changes in research scope and methods," Agricultural Systems, Elsevier, vol. 210(C).
    15. da Silveira, Franco & da Silva, Sabrina Letícia Couto & Machado, Filipe Molinar & Barbedo, Jayme Garcia Arnal & Amaral, Fernando Gonçalves, 2023. "Farmers' perception of the barriers that hinder the implementation of agriculture 4.0," Agricultural Systems, Elsevier, vol. 208(C).
    16. Boulestreau, Yann & Casagrande, Marion & Navarrete, Mireille, 2023. "A method to design coupled innovations for the agroecological transition. Implementation for soil health management in Provencal sheltered vegetable systems," Agricultural Systems, Elsevier, vol. 212(C).
    17. Pabalkar, Vanishree & Moray, Rashmy, 2019. "Implication of Technology on Economic Progress of Farmers: A Case of India," Asian Journal of Agriculture and Rural Development, Asian Economic and Social Society (AESS), vol. 9(02), January.
    18. Giua, Carlo & Materia, Valentina Cristiana & Camanzi, Luca, 2022. "Smart farming technologies adoption: Which factors play a role in the digital transition?," Technology in Society, Elsevier, vol. 68(C).
    19. Lioutas, Evagelos D. & Charatsari, Chrysanthi, 2020. "Smart farming and short food supply chains: Are they compatible?," Land Use Policy, Elsevier, vol. 94(C).
    20. Monteiro Moretti, Débora & Baum, Chad M. & Ehlers, Melf-Hinrich & Finger, Robert & Bröring, Stefanie, 2023. "Exploring actors' perceptions of the precision agriculture innovation system – A Group Concept Mapping approach in Germany and Switzerland," Technological Forecasting and Social Change, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:217:y:2024:i:c:s0308521x24001008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.