IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v210y2023ics0308521x23001117.html
   My bibliography  Save this article

Evaluating the D4Science virtual research environment platform for agro-climatic research

Author

Listed:
  • Knapen, Rob
  • Lokers, Rob
  • Janssen, Sander

Abstract

From its early beginnings the Internet has been used by scientists to collaborate and share information about their research. Increasing connectivity and networking capabilities have resulted in improved collaboration functionalities ultimately combined in complete virtual research environments (VRE) as a type of virtual laboratories. These aim at providing collaborative online workplaces with access to all needed tools, data, and computing resources, and supporting data sharing. Since each research domain has its own characteristics, requirements, and preferred tooling, VRE providers must make trade-offs between the specificity of components and the functionality provided. The D4Science VRE adopts a modular approach based on open standards for constructing VREs for interested communities. The agro-climatic science domain develops diverse analytical tools that it connects to heterogenous data sources (i.e. climate data, experimental fields, satellite data, soil samples) originating from other domains, which is often poorly standardised and sparsely interlinked at best.

Suggested Citation

  • Knapen, Rob & Lokers, Rob & Janssen, Sander, 2023. "Evaluating the D4Science virtual research environment platform for agro-climatic research," Agricultural Systems, Elsevier, vol. 210(C).
  • Handle: RePEc:eee:agisys:v:210:y:2023:i:c:s0308521x23001117
    DOI: 10.1016/j.agsy.2023.103706
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X23001117
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2023.103706?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark W. Maier, 1998. "Architecting principles for systems‐of‐systems," Systems Engineering, John Wiley & Sons, vol. 1(4), pages 267-284.
    2. de Wit, Allard & Boogaard, Hendrik & Fumagalli, Davide & Janssen, Sander & Knapen, Rob & van Kraalingen, Daniel & Supit, Iwan & van der Wijngaart, Raymond & van Diepen, Kees, 2019. "25 years of the WOFOST cropping systems model," Agricultural Systems, Elsevier, vol. 168(C), pages 154-167.
    3. Wolfert, Sjaak & Ge, Lan & Verdouw, Cor & Bogaardt, Marc-Jeroen, 2017. "Big Data in Smart Farming – A review," Agricultural Systems, Elsevier, vol. 153(C), pages 69-80.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin Xie & Biliang Luo & Wenjing Zhong, 2021. "How Are Smallholder Farmers Involved in Digital Agriculture in Developing Countries: A Case Study from China," Land, MDPI, vol. 10(3), pages 1-16, March.
    2. Mahboobe Ghobadi & Mahdi Gheysari & Mohammad Shayannejad & Hamze Dokoohaki, 2023. "Analyzing the Effects of Planting Date on the Uncertainty of CERES-Maize and Its Potential to Reduce Yield Gap in Arid and Mediterranean Climates," Agriculture, MDPI, vol. 13(8), pages 1-17, July.
    3. Oliver Falck & Johannes Koenen, 2020. "Rohstoff „Daten“: Volkswirtschaflicher Nutzen von Datenbereitstellung – eine Bestandsaufnahme," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 113, September.
    4. Hrosul, Viktoriia & Kruhlova, Olena & Kolesnyk, Alina, 2023. "Digitalization of the agricultural sector: the impact of ICT on the development of enterprises in Ukraine," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 9(4), December.
    5. Ascui, Francisco & Ball, Alex & Kahn, Lewis & Rowe, James, 2021. "Is operationalising natural capital risk assessment practicable?," Ecosystem Services, Elsevier, vol. 52(C).
    6. Huo, Dongyang & Malik, Asad Waqar & Ravana, Sri Devi & Rahman, Anis Ur & Ahmedy, Ismail, 2024. "Mapping smart farming: Addressing agricultural challenges in data-driven era," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    7. Pigford, Ashlee-Ann E. & Hickey, Gordon M. & Klerkx, Laurens, 2018. "Beyond agricultural innovation systems? Exploring an agricultural innovation ecosystems approach for niche design and development in sustainability transitions," Agricultural Systems, Elsevier, vol. 164(C), pages 116-121.
    8. Tianyu Qin & Lijun Wang & Yanxin Zhou & Liyue Guo & Gaoming Jiang & Lei Zhang, 2022. "Digital Technology-and-Services-Driven Sustainable Transformation of Agriculture: Cases of China and the EU," Agriculture, MDPI, vol. 12(2), pages 1-16, February.
    9. Viet, Nguyen Quoc & Behdani, Behzad & Bloemhof, Jacqueline, 2018. "Value of Information to Improve Daily Operations in High-Density Logistics," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 9(1), January.
    10. Hrosul, Viktoriia & Kruhlova, Olena & Kolesnyk, Alina, 2023. "Digitization of the Agricultural Sector: The Impact of ICT on the Development of Enterprises in Ukraine," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 9(4), January.
    11. Thomas M. Koutsos & Georgios C. Menexes & Andreas P. Mamolos, 2021. "The Use of Crop Yield Autocorrelation Data as a Sustainable Approach to Adjust Agronomic Inputs," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    12. Li, Lei & Lin, Jiabao & Ouyang, Ye & Luo, Xin (Robert), 2022. "Evaluating the impact of big data analytics usage on the decision-making quality of organizations," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    13. Panos Constantinides & Ola Henfridsson & Geoffrey G. Parker, 2018. "Introduction—Platforms and Infrastructures in the Digital Age," Information Systems Research, INFORMS, vol. 29(2), pages 381-400, June.
    14. Iban, Muzaffer Can & Aksu, Oktay, 2020. "A model for big spatial rural data infrastructure in Turkey: Sensor-driven and integrative approach," Land Use Policy, Elsevier, vol. 91(C).
    15. Divya Suresh & Abhishek Choudhury & Yinjia Zhang & Zhiying Zhao & Rajib Shaw, 2024. "The Role of Data-Driven Agritech Startups—The Case of India and Japan," Sustainability, MDPI, vol. 16(11), pages 1-17, May.
    16. Blake Roberts & Thomas Mazzuchi & Shahram Sarkani, 2016. "Engineered Resilience for Complex Systems as a Predictor for Cost Overruns," Systems Engineering, John Wiley & Sons, vol. 19(2), pages 111-132, March.
    17. Fengwan Zhang & Xueling Bao & Xin Deng & Dingde Xu, 2022. "Rural Land Transfer in the Information Age: Can Internet Use Affect Farmers’ Land Transfer-In?," Land, MDPI, vol. 11(10), pages 1-14, October.
    18. Simon Marvin & Lauren Rickards & Jonathan Rutherford, 2024. "The urbanisation of controlled environment agriculture: Why does it matter for urban studies?," Urban Studies, Urban Studies Journal Limited, vol. 61(8), pages 1430-1450, June.
    19. Bohan, David & Schmucki, Reto & Abay, Abrha & Termansen, Mette & Bane, Miranda & Charalabiis, Alice & Cong, Rong-Gang & Derocles, Stephane & Dorner, Zita & Forster, Matthieu & Gibert, Caroline & Harro, 2020. "Designing farmer-acceptable rotations that assure ecosystem service provision inthe face of climate change," MPRA Paper 112313, University Library of Munich, Germany.
    20. Hidalgo, Francisco & Quiñones-Ruiz, Xiomara F. & Birkenberg, Athena & Daum, Thomas & Bosch, Christine & Hirsch, Patrick & Birner, Regina, 2023. "Digitalization, sustainability, and coffee. Opportunities and challenges for agricultural development," Agricultural Systems, Elsevier, vol. 208(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:210:y:2023:i:c:s0308521x23001117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.