IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v191y2021ics0308521x21000925.html
   My bibliography  Save this article

Evaluation of APEX modifications to simulate forage production for grazing management decision-support in the Western US Great Plains

Author

Listed:
  • Cheng, G.
  • Harmel, R.D.
  • Ma, L.
  • Derner, J.D.
  • Augustine, D.J.
  • Bartling, P.N.S.
  • Fang, Q.X.
  • Williams, J.R.
  • Zilverberg, C.J.
  • Boone, R.B.
  • Hoover, D.
  • Yu, Q.

Abstract

Understanding how grazing management decisions influence the productivity and composition of rangeland plant communities is essential for the development of effective strategies to sustainably produce multiple ecosystem goods and services. Informed with experimental measurements, simulation models can advance our understanding and stewardship of rangeland ecosystems.

Suggested Citation

  • Cheng, G. & Harmel, R.D. & Ma, L. & Derner, J.D. & Augustine, D.J. & Bartling, P.N.S. & Fang, Q.X. & Williams, J.R. & Zilverberg, C.J. & Boone, R.B. & Hoover, D. & Yu, Q., 2021. "Evaluation of APEX modifications to simulate forage production for grazing management decision-support in the Western US Great Plains," Agricultural Systems, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:agisys:v:191:y:2021:i:c:s0308521x21000925
    DOI: 10.1016/j.agsy.2021.103139
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X21000925
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2021.103139?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fust, Pascal & Schlecht, Eva, 2018. "Integrating spatio-temporal variation in resource availability and herbivore movements into rangeland management: RaMDry—An agent-based model on livestock feeding ecology in a dynamic, heterogeneous, ," Ecological Modelling, Elsevier, vol. 369(C), pages 13-41.
    2. Stout, W. L. & Vona, L. C. & Skiles, J. W. & Shaffer, J. A. & Jung, G. A. & Reid, R. L., 1990. "Evaluating SPUR model for predicting animal gains and biomass on eastern hill land pastures," Agricultural Systems, Elsevier, vol. 34(2), pages 169-178.
    3. Bosi, Cristiam & Sentelhas, Paulo Cesar & Huth, Neil Ian & Pezzopane, José Ricardo Macedo & Andreucci, Mariana Pares & Santos, Patricia Menezes, 2020. "APSIM-Tropical Pasture: A model for simulating perennial tropical grass growth and its parameterisation for palisade grass (Brachiaria brizantha)," Agricultural Systems, Elsevier, vol. 184(C).
    4. Zilverberg, Cody J. & Angerer, Jay & Williams, Jimmy & Metz, Loretta J. & Harmoney, Keith, 2018. "Sensitivity of diet choices and environmental outcomes to a selective grazing algorithm," Ecological Modelling, Elsevier, vol. 390(C), pages 10-22.
    5. Kiniry, James R. & Williams, J. R. & Gassman, Philip W. & Debacke, P., 1992. "General, Process-Oriented Model for Two Competing Plant Species (A)," Staff General Research Papers Archive 483, Iowa State University, Department of Economics.
    6. Zilverberg, Cody J. & Williams, Jimmy & Jones, Curtis & Harmoney, Keith & Angerer, Jay & Metz, Loretta J. & Fox, William, 2017. "Process-based simulation of prairie growth," Ecological Modelling, Elsevier, vol. 351(C), pages 24-35.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A, Tadesse & Jeong, Jaehak & Green, Colleen H.M., 2022. "Modeling landscape wind erosion processes on rangelands using the APEX model," Ecological Modelling, Elsevier, vol. 467(C).
    2. Merri E. Day & Minfeng Tang & Phillip A. Lancaster & Deann Presley & Dustin L. Pendell & Walter H. Fick & Luca Doro & Adam Ahlers & Andrew Ricketts, 2023. "Simulation of the Impact of Rangeland Management Strategies on Soil Health, Environmental Footprint, Economic Impact, and Human-Edible Nutrient Conversion from Grasslands in the Central and Northern G," Sustainability, MDPI, vol. 15(16), pages 1-43, August.
    3. Fang, Q.X. & Harmel, R.D. & Ma, L. & Bartling, P.N.S. & Derner, J.D. & Jeong, J. & Williams, J.R. & Boone, R.B., 2022. "Evaluating the APEX model for alternative cow-calf grazing management strategies in Central Texas," Agricultural Systems, Elsevier, vol. 195(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meki, Manyowa N. & Osorio-Leyton, Javier & Steglich, Evelyn M. & Kiniry, Jim R. & Propato, Marco & Winchell, Mike & Rathjens, Hendrik & Angerer, Jay P. & Norfleet, Lee M., 2023. "Plant parameterization and APEXgraze model calibration and validation for US land resource region H grazing lands," Agricultural Systems, Elsevier, vol. 207(C).
    2. Edward C. Rhodes & Douglas R. Tolleson & Jay P. Angerer, 2022. "Modeling Herbaceous Biomass for Grazing and Fire Risk Management," Land, MDPI, vol. 11(10), pages 1-13, October.
    3. A, Tadesse & Jeong, Jaehak & Green, Colleen H.M., 2022. "Modeling landscape wind erosion processes on rangelands using the APEX model," Ecological Modelling, Elsevier, vol. 467(C).
    4. Fang, Q.X. & Harmel, R.D. & Ma, L. & Bartling, P.N.S. & Derner, J.D. & Jeong, J. & Williams, J.R. & Boone, R.B., 2022. "Evaluating the APEX model for alternative cow-calf grazing management strategies in Central Texas," Agricultural Systems, Elsevier, vol. 195(C).
    5. Garcia y Garcia, Axel & Guerra, Larry C. & Hoogenboom, Gerrit, 2008. "Impact of generated solar radiation on simulated crop growth and yield," Ecological Modelling, Elsevier, vol. 210(3), pages 312-326.
    6. Xie, Yun & Kiniry, James R. & Williams, Jimmy R., 2003. "The ALMANAC model's sensitivity to input variables," Agricultural Systems, Elsevier, vol. 78(1), pages 1-16, October.
    7. Čerkasova, Natalja & White, Michael & Arnold, Jeffrey & Bieger, Katrin & Allen, Peter & Gao, Jungang & Gambone, Marilyn & Meki, Manyowa & Kiniry, James & Gassman, Philip W., 2023. "Field scale SWAT+ modeling of corn and soybean yields for the contiguous United States: National Agroecosystem Model Development," Agricultural Systems, Elsevier, vol. 210(C).
    8. Kiniry, James R. & Bean, Brent & Xie, Yun & Chen, Pei-yu, 2004. "Maize yield potential: critical processes and simulation modeling in a high-yielding environment," Agricultural Systems, Elsevier, vol. 82(1), pages 45-56, October.
    9. Iqbal, M. Anjum & Shen, Yanjun & Stricevic, Ruzica & Pei, Hongwei & Sun, Hongyoung & Amiri, Ebrahim & Penas, Angel & del Rio, Sara, 2014. "Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation," Agricultural Water Management, Elsevier, vol. 135(C), pages 61-72.
    10. Talebizadeh, Mansour & Moriasi, Daniel & Gowda, Prasanna & Steiner, Jean L. & Tadesse, Haile K. & Nelson, Amanda M. & Starks, Patrick, 2018. "Simultaneous calibration of evapotranspiration and crop yield in agronomic system modeling using the APEX model," Agricultural Water Management, Elsevier, vol. 208(C), pages 299-306.
    11. Ascough II, J.C. & Andales, A.A. & Sherrod, L.A. & McMaster, G.S. & Hansen, N.C. & DeJonge, K.C. & Fathelrahman, E.M. & Ahuja, L.R. & Peterson, G.A. & Hoag, D.L., 2010. "Simulating landscape catena effects in no-till dryland agroecosystems using GPFARM," Agricultural Systems, Elsevier, vol. 103(8), pages 569-584, October.
    12. Napoli, Marco & Orlandini, Simone, 2015. "Evaluating the Arc-SWAT2009 in predicting runoff, sediment, and nutrient yields from a vineyard and an olive orchard in Central Italy," Agricultural Water Management, Elsevier, vol. 153(C), pages 51-62.
    13. Ungar, Eugene David, 2019. "Perspectives on the concept of rangeland carrying capacity, and their exploration by means of Noy-Meir's two-function model," Agricultural Systems, Elsevier, vol. 173(C), pages 403-413.
    14. Warth, Benjamin & Marohn, Carsten & Asch, Folkard, 2021. "Improved simulation of plant-animal interactions in African savannas with the extended land use change model LUCIA," Ecological Modelling, Elsevier, vol. 446(C).
    15. Żyromski, Andrzej & Szulczewski, Wiesław & Biniak-Pieróg, Małgorzata & Jakubowski, Wojciech, 2016. "The estimation of basket willow (Salix viminalis) yield – New approach. Part I: Background and statistical description," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1118-1126.
    16. Mabhaudhi, Tafadzwanashe & Dirwai, Tinashe Lindel & Taguta, Cuthbert & Sikka, Alok & Lautze, Jonathan, 2023. "Mapping Decision Support Tools (DSTs) on agricultural water productivity: A global systematic scoping review," Agricultural Water Management, Elsevier, vol. 290(C).
    17. He, Haosen & Buchholtz, Erin & Chen, Frederick & Vogel, Susanne & Yu, Chu A.(Alex), 2022. "An agent-based model of elephant crop consumption walks using combinatorial optimization," Ecological Modelling, Elsevier, vol. 464(C).
    18. Brinkmann, Katja & Kübler, Daniel & Liehr, Stefan & Buerkert, Andreas, 2021. "Agent-based modelling of the social-ecological nature of poverty traps in southwestern Madagascar," Agricultural Systems, Elsevier, vol. 190(C).
    19. Corson, Michael S. & Skinner, R. Howard & Rotz, C. Alan, 2006. "Modification of the SPUR rangeland model to simulate species composition and pasture productivity in humid temperate regions," Agricultural Systems, Elsevier, vol. 87(2), pages 169-191, February.
    20. Colas, Floriane & Gauchi, Jean-Pierre & Villerd, Jean & Colbach, Nathalie, 2021. "Simplifying a complex computer model: Sensitivity analysis and metamodelling of an 3D individual-based crop-weed canopy model," Ecological Modelling, Elsevier, vol. 454(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:191:y:2021:i:c:s0308521x21000925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.