IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v184y2020ics0308521x20307782.html
   My bibliography  Save this article

APSIM-Tropical Pasture: A model for simulating perennial tropical grass growth and its parameterisation for palisade grass (Brachiaria brizantha)

Author

Listed:
  • Bosi, Cristiam
  • Sentelhas, Paulo Cesar
  • Huth, Neil Ian
  • Pezzopane, José Ricardo Macedo
  • Andreucci, Mariana Pares
  • Santos, Patricia Menezes

Abstract

Tropical grasses are used as forage, to produce energy from biomass, for land restoration and carbon sequestration, among other applications. Many modelling approaches have been employed to simulate tropical grasses growth, but these have several limitations that must be solved by adapting them or creating new models. This study aimed to develop a tropical pasture model in the Agricultural Production Systems Simulator (APSIM) modelling framework, and to parameterise it to simulate Brachiaria brizantha ‘BRS Piatã’ growth, under grazing and cut-and-carry management. For this, three field experiments were conducted in the South-east of Brazil where pasture growth was measured in a cut-and-carry system, with irrigated and rainfed treatments, and in a rainfed grazing system. Model evaluation was performed through precision and accuracy indices and simulation errors. Under cut-and-carry management, forage productivity was estimated with R2 values from 0.89 to 0.94, Willmott agreement indices between 0.97 and 0.98, and Nash-Sutcliffe Efficiency values of 0.88 to up to 0.92. This demonstrates the capacity of the APSIM-Tropical Pasture model to simulate tropical pastures. Simulation of phenology, early growth after sowing, partitioning and senescence during flowering, and reallocation and retranslocation of plant dry matter and nitrogen were important aspects for this capacity. Then, APSIM-Tropical Pasture can be used to simulate tropical pastures, but several requirements for further improvements have been identified, such as to improve the simulations of flowering for palisade grass, N effects on pasture yield, reallocation and retranslocation processes. Under grazing management, forage productivity was estimated with R2 = 0.80, Willmott agreement index of 0.91, and Nash-Sutcliffe Efficiency value of 0.62. Despite these reasonable results, simulations presented problems, since does not take into account the effect of grazing animals on pastures. This indicates that, in its current form, APSIM-Tropical Pasture is not able to simulate pastures under grazing effectively. However, this simulation of grazed system was important to identify main modelling constraints and direct future research to improve knowledge of processes and interactions needed for pasture model development.

Suggested Citation

  • Bosi, Cristiam & Sentelhas, Paulo Cesar & Huth, Neil Ian & Pezzopane, José Ricardo Macedo & Andreucci, Mariana Pares & Santos, Patricia Menezes, 2020. "APSIM-Tropical Pasture: A model for simulating perennial tropical grass growth and its parameterisation for palisade grass (Brachiaria brizantha)," Agricultural Systems, Elsevier, vol. 184(C).
  • Handle: RePEc:eee:agisys:v:184:y:2020:i:c:s0308521x20307782
    DOI: 10.1016/j.agsy.2020.102917
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X20307782
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2020.102917?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bosi, Cristiam & Sentelhas, Paulo Cesar & Pezzopane, José Ricardo Macedo & Santos, Patricia Menezes, 2020. "CROPGRO-Perennial Forage model parameterization for simulating Piatã palisade grass growth in monoculture and in a silvopastoral system," Agricultural Systems, Elsevier, vol. 177(C).
    2. Probert, M. E. & Dimes, J. P. & Keating, B. A. & Dalal, R. C. & Strong, W. M., 1998. "APSIM's water and nitrogen modules and simulation of the dynamics of water and nitrogen in fallow systems," Agricultural Systems, Elsevier, vol. 56(1), pages 1-28, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bosi, Cristiam & Huth, Neil Ian & Sentelhas, Paulo Cesar & Pezzopane, José Ricardo Macedo, 2022. "APSIM model performance in simulating Piatã palisade grass growth and soil water in different positions of a silvopastoral system with eucalyptus," Agricultural Systems, Elsevier, vol. 195(C).
    2. Hao, Shirui & Ryu, Dongryeol & Western, Andrew & Perry, Eileen & Bogena, Heye & Franssen, Harrie Jan Hendricks, 2021. "Performance of a wheat yield prediction model and factors influencing the performance: A review and meta-analysis," Agricultural Systems, Elsevier, vol. 194(C).
    3. Cheng, G. & Harmel, R.D. & Ma, L. & Derner, J.D. & Augustine, D.J. & Bartling, P.N.S. & Fang, Q.X. & Williams, J.R. & Zilverberg, C.J. & Boone, R.B. & Hoover, D. & Yu, Q., 2021. "Evaluation of APEX modifications to simulate forage production for grazing management decision-support in the Western US Great Plains," Agricultural Systems, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bosi, Cristiam & Huth, Neil Ian & Sentelhas, Paulo Cesar & Pezzopane, José Ricardo Macedo, 2022. "APSIM model performance in simulating Piatã palisade grass growth and soil water in different positions of a silvopastoral system with eucalyptus," Agricultural Systems, Elsevier, vol. 195(C).
    2. Hao, Shirui & Ryu, Dongryeol & Western, Andrew W & Perry, Eileen & Bogena, Heye & Franssen, Harrie Jan Hendricks, 2024. "Global sensitivity analysis of APSIM-wheat yield predictions to model parameters and inputs," Ecological Modelling, Elsevier, vol. 487(C).
    3. El-Naggar, A.G. & Hedley, C.B. & Horne, D. & Roudier, P. & Clothier, B.E., 2020. "Soil sensing technology improves application of irrigation water," Agricultural Water Management, Elsevier, vol. 228(C).
    4. He, Qinsi & Liu, De Li & Wang, Bin & Li, Linchao & Cowie, Annette & Simmons, Aaron & Zhou, Hongxu & Tian, Qi & Li, Sien & Li, Yi & Liu, Ke & Yan, Haoliang & Harrison, Matthew Tom & Feng, Puyu & Waters, 2022. "Identifying effective agricultural management practices for climate change adaptation and mitigation: A win-win strategy in South-Eastern Australia," Agricultural Systems, Elsevier, vol. 203(C).
    5. Vieira Junior, Nilson Aparecido & Evers, Jochem & dos Santos Vianna, Murilo & Pedreira, Bruno Carneiro e & Pezzopane, José Ricardo Macedo & Marin, Fábio Ricardo, 2022. "Understanding the arrangement of Eucalyptus-Marandu palisade grass silvopastoral systems in Brazil," Agricultural Systems, Elsevier, vol. 196(C).
    6. Thomas, N., 2021. "Alternative Crop Management Methods to Increase Crop Productivity and Farmer Utility," 2021 Conference, August 17-31, 2021, Virtual 315042, International Association of Agricultural Economists.
    7. Grotelüschen, Kristina & Gaydon, Donald S. & Langensiepen, Matthias & Ziegler, Susanne & Kwesiga, Julius & Senthilkumar, Kalimuthu & Whitbread, Anthony M. & Becker, Mathias, 2021. "Assessing the effects of management and hydro-edaphic conditions on rice in contrasting East African wetlands using experimental and modelling approaches," Agricultural Water Management, Elsevier, vol. 258(C).
    8. Marcos Jiménez Martínez & Christine Fürst, 2021. "Simulating the Capacity of Rainfed Food Crop Species to Meet Social Demands in Sudanian Savanna Agro-Ecologies," Land, MDPI, vol. 10(8), pages 1-28, August.
    9. Yang, Xuan & Zheng, Lina & Yang, Qian & Wang, Zikui & Cui, Song & Shen, Yuying, 2018. "Modelling the effects of conservation tillage on crop water productivity, soil water dynamics and evapotranspiration of a maize-winter wheat-soybean rotation system on the Loess Plateau of China using," Agricultural Systems, Elsevier, vol. 166(C), pages 111-123.
    10. Farquharson, Robert J. & Cacho, Oscar J. & Mullen, John D., 2005. "An economic approach to soil fertility management for wheat production in New South Wales and Queensland," 2005 Conference (49th), February 9-11, 2005, Coff's Harbour, Australia 137866, Australian Agricultural and Resource Economics Society.
    11. van Oort, P.A.J. & Wang, G. & Vos, J. & Meinke, H. & Li, B.G. & Huang, J.K. & van der Werf, W., 2016. "Towards groundwater neutral cropping systems in the Alluvial Fans of the North China Plain," Agricultural Water Management, Elsevier, vol. 165(C), pages 131-140.
    12. Chauhan, Yashvir S., 2010. "Potential productivity and water requirements of maize-peanut rotations in Australian semi-arid tropical environments--A crop simulation study," Agricultural Water Management, Elsevier, vol. 97(3), pages 457-464, March.
    13. Dumbrell, Nikki P. & Kragt, Marit E. & Biggs, Jody & Meier, Elizabeth & Thorburn, Peter, 2015. "Climate change abatement and farm profitability analyses across agricultural environments," Working Papers 225674, University of Western Australia, School of Agricultural and Resource Economics.
    14. Oliver, Yvette M. & Robertson, Michael J. & Weeks, Cameron, 2010. "A new look at an old practice: Benefits from soil water accumulation in long fallows under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 98(2), pages 291-300, December.
    15. Kodur, S., 2017. "Improving the prediction of soil evaporation for different soil types under dryland cropping," Agricultural Water Management, Elsevier, vol. 193(C), pages 131-141.
    16. Vogeler, Iris & Thomas, Steve & van der Weerden, Tony, 2019. "Effect of irrigation management on pasture yield and nitrogen losses," Agricultural Water Management, Elsevier, vol. 216(C), pages 60-69.
    17. Eranga M. Wimalasiri & Ebrahim Jahanshiri & Tengku Adhwa Syaherah Tengku Mohd Suhairi & Hasika Udayangani & Ranjith B. Mapa & Asha S. Karunaratne & Lal P. Vidhanarachchi & Sayed N. Azam-Ali, 2020. "Basic Soil Data Requirements for Process-Based Crop Models as a Basis for Crop Diversification," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    18. Monjardino, M. & McBeath, T. & Ouzman, J. & Llewellyn, R. & Jones, B., 2015. "Farmer risk-aversion limits closure of yield and profit gaps: A study of nitrogen management in the southern Australian wheatbelt," Agricultural Systems, Elsevier, vol. 137(C), pages 108-118.
    19. Palosuo, Taru & Hoffmann, Munir P. & Rötter, Reimund P. & Lehtonen, Heikki S., 2021. "Sustainable intensification of crop production under alternative future changes in climate and technology: The case of the North Savo region," Agricultural Systems, Elsevier, vol. 190(C).
    20. Andrew L. Fletcher & Chao Chen & Noboru Ota & Roger A. Lawes & Yvette M. Oliver, 2020. "Has historic climate change affected the spatial distribution of water-limited wheat yield across Western Australia?," Climatic Change, Springer, vol. 159(3), pages 347-364, April.

    More about this item

    Keywords

    BRS Piatã cultivar; Forage; Modelling; Cut-and-carry; Grazing; C4 grass;
    All these keywords.

    JEL classification:

    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:184:y:2020:i:c:s0308521x20307782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.