IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v184y2020ics0308521x20307538.html
   My bibliography  Save this article

Predicting methane emissions, animal-environmental metrics and carbon footprint from Brahman (Bos indicus) breeding herd systems based on long-term research on grazing of neotropical savanna and Brachiaria decumbens pastures

Author

Listed:
  • Ramírez-Restrepo, Carlos A.
  • Vera-Infanzón, Raul R.
  • Rao, Idupulapati M.

Abstract

Beef cattle production constitutes the main land use in the neotropical savannas of the eastern Colombian Orinoquia. However, the effects of Brachiaria decumbens Stapf (Bd) pastures and the alternative combination of savanna and B. decumbens pastures (SaBd) to raise and breed tropical beef heifers and cows, and their impacts on methane (CH4) emissions and overall carbon (C) footprint are still unknown. This study aimed to predict CH4 emissions, animal-environmental metrics and overall C footprint across heifers' growth, cow-calf-bull and cull cows' fattening productive stages of Brahman (Bos indicus) breeding herds, lifetime-grazing on B. decumbens pastures or a sequence of native savanna and B. decumbens pastures. A dynamic model-method was used with detailed liveweight (LW) and productive lifetime-cows' data together with estimated values of above- and belowground pasture biomass and soil C stocks. This framework recognized commercial farming practices such as growing and mating female herds on Bd (Bd scenario) or rising them on savanna and grazing Bd pastures (SaBd scenario) during the herd's breeding life. The study complemented this socio-economic, cultural and productive tradition by fattening cull cows using the improved Bd pasture and illustrated the cointegrating relationship with structural-flows of LW-derived CH4 emissions. As heifers aged, accumulated CH4 emission efficiencies [t carbon dioxide (CO2) equivalent (CO2-eq) head −1] were lower in the Bd scenario than in the SaBd scenario from birth to conception (2.67 ± 0.087 vs 3.49 ± 0.087; P < .0001), while following the same trend, emissions from the first to the fourth lactation were in the range of 0.821–0.865 (P < .05) between scenarios, but similar in the two other lactations. Methane efficiency estimates from cow-calf pairs (t CO2-eq kg −1 calf born) tended to be lower in the Bd scenario than in the SaBd scenario up to the fourth lactation. In the extreme, calculated values during the fattening phase were 0.935 t CO2-eq head −1. In this context, the estimated animal greenhouse gas emissions and annual soil C accumulation values revealed not only a differentiation of the estimated C footprint at system level between animal productive stages, but also more likely natural CO2 removal from the atmosphere with all three animal phases of Bd scenarios. Hence, this study provides evidence for the experimental hypothesis that dynamic modelling based on long-term research results on improved Bd pastures would allow the estimation of the overall C footprint of Brahman breeding herds and their sustainable performance in the Colombian neotropical savanna environment.

Suggested Citation

  • Ramírez-Restrepo, Carlos A. & Vera-Infanzón, Raul R. & Rao, Idupulapati M., 2020. "Predicting methane emissions, animal-environmental metrics and carbon footprint from Brahman (Bos indicus) breeding herd systems based on long-term research on grazing of neotropical savanna and Brach," Agricultural Systems, Elsevier, vol. 184(C).
  • Handle: RePEc:eee:agisys:v:184:y:2020:i:c:s0308521x20307538
    DOI: 10.1016/j.agsy.2020.102892
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X20307538
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2020.102892?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goopy, J.P. & Onyango, A.A. & Dickhoefer, U. & Butterbach-Bahl, K., 2018. "A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa – Results for Nyando, Western Kenya," Agricultural Systems, Elsevier, vol. 161(C), pages 72-80.
    2. Bradley G. Ridoutt & Peerasak Sanguansri & Gregory S. Harper, 2011. "Comparing Carbon and Water Footprints for Beef Cattle Production in Southern Australia," Sustainability, MDPI, vol. 3(12), pages 1-13, December.
    3. Wiedemann, S.G. & Henry, B.K. & McGahan, E.J. & Grant, T. & Murphy, C.M. & Niethe, G., 2015. "Resource use and greenhouse gas intensity of Australian beef production: 1981–2010," Agricultural Systems, Elsevier, vol. 133(C), pages 109-118.
    4. Mayberry, Dianne & Bartlett, Harriet & Moss, Jonathan & Davison, Thomas & Herrero, Mario, 2019. "Pathways to carbon-neutrality for the Australian red meat sector," Agricultural Systems, Elsevier, vol. 175(C), pages 13-21.
    5. Mercedes Bustamante & Carlos Nobre & Roberto Smeraldi & Ana Aguiar & Luis Barioni & Laerte Ferreira & Karla Longo & Peter May & Alexandre Pinto & Jean Ometto, 2012. "Estimating greenhouse gas emissions from cattle raising in Brazil," Climatic Change, Springer, vol. 115(3), pages 559-577, December.
    6. Cardoso, Abmael S. & Berndt, Alexandre & Leytem, April & Alves, Bruno J.R. & de Carvalho, Isabel das N.O. & de Barros Soares, Luis Henrique & Urquiaga, Segundo & Boddey, Robert M., 2016. "Impact of the intensification of beef production in Brazil on greenhouse gas emissions and land use," Agricultural Systems, Elsevier, vol. 143(C), pages 86-96.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vogel, Everton & Martinelli, Gabrielli & Artuzo, Felipe Dalzotto, 2021. "Environmental and economic performance of paddy field-based crop-livestock systems in Southern Brazil," Agricultural Systems, Elsevier, vol. 190(C).
    2. Pedro Henrique Presumido & Fernando Sousa & Artur Gonçalves & Tatiane Cristina Dal Bosco & Manuel Feliciano, 2018. "Environmental Impacts of the Beef Production Chain in the Northeast of Portugal Using Life Cycle Assessment," Agriculture, MDPI, vol. 8(10), pages 1-19, October.
    3. Kangyin Dong & Yalin Han & Yue Dou & Muhammad Shahbaz, 2022. "Moving toward carbon neutrality: Assessing natural gas import security and its impact on CO2 emissions," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(4), pages 751-770, August.
    4. Ymène Fouli & Margot Hurlbert & Roland Kröbel, 2021. "Greenhouse Gas Emissions From Canadian Agriculture: Estimates and Measurements," SPP Briefing Papers, The School of Public Policy, University of Calgary, vol. 14(35), November.
    5. André Pastori D’Aurea & Abmael da Silva Cardoso & Yuri Santa Rosa Guimarães & Lauriston Bertelli Fernandes & Luis Eduardo Ferreira & Ricardo Andrade Reis, 2021. "Mitigating Greenhouse Gas Emissions from Beef Cattle Production in Brazil through Animal Management," Sustainability, MDPI, vol. 13(13), pages 1-9, June.
    6. White, Robin R. & Brady, Michael & Capper, Judith L. & Johnson, Kristen A., 2014. "Optimizing diet and pasture management to improve sustainability of U.S. beef production," Agricultural Systems, Elsevier, vol. 130(C), pages 1-12.
    7. World Bank, 2017. "Brazil’s INDC Restoration and Reforestation Target," World Bank Publications - Reports 28588, The World Bank Group.
    8. Dakpo, K Hervé & Latruffe, Laure, 2016. "Agri-environmental subsidies and French suckler cow farms’ technical efficiency accounting for GHGs," 90th Annual Conference, April 4-6, 2016, Warwick University, Coventry, UK 236339, Agricultural Economics Society.
    9. Graham, Michael W. & Chelanga, Philemon & Jensen, Nathaniel D. & Leitner, Sonja M. & Fava, Francesco & Merbold, Lutz, 2021. "A framework for assessing the effects of shock events on livestock and environment in sub-Saharan Africa: The COVID-19 pandemic in Northern Kenya," Agricultural Systems, Elsevier, vol. 192(C).
    10. Marta Antonelli & Luca Fernando Ruini, 2015. "Business Engagement with Sustainable Water Resource Management through Water Footprint Accounting: The Case of the Barilla Company," Sustainability, MDPI, vol. 7(6), pages 1-17, May.
    11. Putman, Ben & Thoma, Greg & Burek, Jasmina & Matlock, Marty, 2017. "A retrospective analysis of the United States poultry industry: 1965 compared with 2010," Agricultural Systems, Elsevier, vol. 157(C), pages 107-117.
    12. Searchinger, Timothy D. & Beringer, Tim & Strong, Asa, 2017. "Does the world have low-carbon bioenergy potential from the dedicated use of land?," Energy Policy, Elsevier, vol. 110(C), pages 434-446.
    13. Alexandre C. Köberle & Pedro R. R. Rochedo & André F. P. Lucena & Alexandre Szklo & Roberto Schaeffer, 2020. "Brazil’s emission trajectories in a well-below 2 °C world: the role of disruptive technologies versus land-based mitigation in an already low-emission energy system," Climatic Change, Springer, vol. 162(4), pages 1823-1842, October.
    14. Francisco Ascui & Theodor F. Cojoianu, 2019. "Implementing natural capital credit risk assessment in agricultural lending," Business Strategy and the Environment, Wiley Blackwell, vol. 28(6), pages 1234-1249, September.
    15. Patrice Dumas & Stefan Wirsenius & Tim Searchinger & Nadine Andrieu & Adrien Vogt-Schilb, 2022. "Options to achieve net - zero emissions from agriculture and land use changes in Latin America and the Caribbean," Post-Print halshs-03760573, HAL.
    16. Wiedemann, S.G. & Henry, B.K. & McGahan, E.J. & Grant, T. & Murphy, C.M. & Niethe, G., 2015. "Resource use and greenhouse gas intensity of Australian beef production: 1981–2010," Agricultural Systems, Elsevier, vol. 133(C), pages 109-118.
    17. Vlaeminck, Pieter & Jiang, Ting & Vranken, Liesbet, 2014. "Labelling and consumer behaviour: experimental evidence from a Belgian supermarket," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182742, European Association of Agricultural Economists.
    18. Andrew Berardy & Ujué Fresán & Rodrigo A. Matos & Abigail Clarke & Alfredo Mejia & Karen Jaceldo-Siegl & Joan Sabaté, 2020. "Environmental Impacts of Foods in the Adventist Health Study-2 Dietary Questionnaire," Sustainability, MDPI, vol. 12(24), pages 1-14, December.
    19. Emanuele Bonamente & Flavio Scrucca & Francesco Asdrubali & Franco Cotana & Andrea Presciutti, 2015. "The Water Footprint of the Wine Industry: Implementation of an Assessment Methodology and Application to a Case Study," Sustainability, MDPI, vol. 7(9), pages 1-19, September.
    20. Bonaudo, Thierry & Piraux, Marc & Gameiro, Augusto Hauber, 2021. "Analysing intensification, autonomy and efficiencies of livestock production through nitrogen flows: A case study of an emblematic Amazonian territory," Agricultural Systems, Elsevier, vol. 190(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:184:y:2020:i:c:s0308521x20307538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.