IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v168y2019icp168-180.html
   My bibliography  Save this article

Improving WOFOST model to simulate winter wheat phenology in Europe: Evaluation and effects on yield

Author

Listed:
  • Ceglar, A.
  • van der Wijngaart, R.
  • de Wit, A.
  • Lecerf, R.
  • Boogaard, H.
  • Seguini, L.
  • van den Berg, M.
  • Toreti, A.
  • Zampieri, M.
  • Fumagalli, D.
  • Baruth, B.

Abstract

This study describes and evaluates improvements to the MARS crop yield forecasting system (MCYFS) for winter soft wheat (Triticum aestivum) in Europe, based on the WOFOST crop simulation model, by introducing autumn sowing dates, realistic soil moisture initialization, adding vernalization requirements and photoperiodicity, and phenology calibration. Dataset of phenological observations complemented with regional cropping calendars across Europe is used. The calibration of thermal requirements for anthesis and maturity is done by pooling all available observations within European agro-environmental zones and minimizing an objective function that combines the differences between observed and simulated anthesis, maturity and harvest dates. Calibrated phenology results in substantial improvement in simulated dates of anthesis with respect to the original MCYFS simulations. The combined improvements to the system result in a physically more plausible spatial distribution of crop model indicators across Europe. Crop yield indicators point to better agreement with recorded national winter wheat yields with respect to the original MCYFS simulations, most pronounced in central, eastern and southern Europe. However, model skill remains low in large parts of western Europe, which may possibly be attributed to the impacts of wet conditions.

Suggested Citation

  • Ceglar, A. & van der Wijngaart, R. & de Wit, A. & Lecerf, R. & Boogaard, H. & Seguini, L. & van den Berg, M. & Toreti, A. & Zampieri, M. & Fumagalli, D. & Baruth, B., 2019. "Improving WOFOST model to simulate winter wheat phenology in Europe: Evaluation and effects on yield," Agricultural Systems, Elsevier, vol. 168(C), pages 168-180.
  • Handle: RePEc:eee:agisys:v:168:y:2019:i:c:p:168-180
    DOI: 10.1016/j.agsy.2018.05.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X17309897
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2018.05.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balkovič, Juraj & van der Velde, Marijn & Schmid, Erwin & Skalský, Rastislav & Khabarov, Nikolay & Obersteiner, Michael & Stürmer, Bernhard & Xiong, Wei, 2013. "Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation," Agricultural Systems, Elsevier, vol. 120(C), pages 61-75.
    2. Blanco, María & Ramos, Fabien & Van Doorslaer, Benjamin & Martínez, Pilar & Fumagalli, Davide & Ceglar, Andrej & Fernández, Francisco J., 2017. "Climate change impacts on EU agriculture: A regionalized perspective taking into account market-driven adjustments," Agricultural Systems, Elsevier, vol. 156(C), pages 52-66.
    3. Wang, Enli & Engel, Thomas, 1998. "Simulation of phenological development of wheat crops," Agricultural Systems, Elsevier, vol. 58(1), pages 1-24, September.
    4. Miroslav Trnka & Reimund P. Rötter & Margarita Ruiz-Ramos & Kurt Christian Kersebaum & Jørgen E. Olesen & Zdeněk Žalud & Mikhail A. Semenov, 2014. "Adverse weather conditions for European wheat production will become more frequent with climate change," Nature Climate Change, Nature, vol. 4(7), pages 637-643, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yujie & Bachofen, Christoph & Wittwer, Raphaël & Silva Duarte, Gicele & Sun, Qing & Klaus, Valentin H. & Buchmann, Nina, 2022. "Using PhenoCams to track crop phenology and explain the effects of different cropping systems on yield," Agricultural Systems, Elsevier, vol. 195(C).
    2. Marco Bascietto & Enrico Santangelo & Claudio Beni, 2021. "Spatial Variations of Vegetation Index from Remote Sensing Linked to Soil Colloidal Status," Land, MDPI, vol. 10(1), pages 1-15, January.
    3. Wang, Hui & Mongiano, Gabriele & Fanchini, Davide & Titone, Patrizia & Tamborini, Luigi & Bregaglio, Simone, 2021. "Varietal susceptibility overcomes climate change effects on the future trends of rice blast disease in Northern Italy," Agricultural Systems, Elsevier, vol. 193(C).
    4. Yang, Chenyao & Menz, Christoph & Fraga, Helder & Costafreda-Aumedes, Sergi & Leolini, Luisa & Ramos, Maria Concepción & Molitor, Daniel & van Leeuwen, Cornelis & Santos, João A., 2022. "Assessing the grapevine crop water stress indicator over the flowering-veraison phase and the potential yield lose rate in important European wine regions," Agricultural Water Management, Elsevier, vol. 261(C).
    5. Tiecheng Bai & Nannan Zhang & Youqi Chen & Benoit Mercatoris, 2019. "Assessing the Performance of the WOFOST Model in Simulating Jujube Fruit Tree Growth under Different Irrigation Regimes," Sustainability, MDPI, vol. 11(5), pages 1-16, March.
    6. Bregaglio, Simone & Ginaldi, Fabrizio & Raparelli, Elisabetta & Fila, Gianni & Bajocco, Sofia, 2023. "Improving crop yield prediction accuracy by embedding phenological heterogeneity into model parameter sets," Agricultural Systems, Elsevier, vol. 209(C).
    7. Chengkun Wang & Nannan Zhang & Mingzhe Li & Li Li & Tiecheng Bai, 2022. "Pear Tree Growth Simulation and Soil Moisture Assessment Considering Pruning," Agriculture, MDPI, vol. 12(10), pages 1-26, October.
    8. Adina-Eliza Croitoru & Titus Cristian Man & Sorin Daniel Vâtcă & Bela Kobulniczky & Vlad Stoian, 2020. "Refining the Spatial Scale for Maize Crop Agro-Climatological Suitability Conditions in a Region with Complex Topography towards a Smart and Sustainable Agriculture. Case Study: Central Romania (Cluj ," Sustainability, MDPI, vol. 12(7), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    2. Jose Oteros & Herminia García-Mozo & Roser Botey & Antonio Mestre & Carmen Galán, 2015. "Variations in cereal crop phenology in Spain over the last twenty-six years (1986–2012)," Climatic Change, Springer, vol. 130(4), pages 545-558, June.
    3. Liu, Xing & Lehtonen, Heikki & Purola, Tuomo & Pavlova, Yulia & Rötter, Reimund & Palosuo, Taru, 2016. "Dynamic economic modelling of crop rotations with farm management practices under future pest pressure," Agricultural Systems, Elsevier, vol. 144(C), pages 65-76.
    4. Nicole Costa Resende Ferreira & Jarbas Honorio Miranda, 2021. "Projected changes in corn crop productivity and profitability in Parana, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3236-3250, March.
    5. Milica Kanjevac & Biljana Bojović & Andrija Ćirić & Milan Stanković & Dragana Jakovljević, 2022. "Seed Priming Improves Biochemical and Physiological Performance of Wheat Seedlings under Low-Temperature Conditions," Agriculture, MDPI, vol. 13(1), pages 1-15, December.
    6. Taylor, Chris & Cullen, Brendan & D'Occhio, Michael & Rickards, Lauren & Eckard, Richard, 2018. "Trends in wheat yields under representative climate futures: Implications for climate adaptation," Agricultural Systems, Elsevier, vol. 164(C), pages 1-10.
    7. Andersen, Lykke E. & Breisinger, Clemens & Jemio, Luis Carlos & Mason-D’Croz, Daniel & Ringler, Claudia & Robertson, Richard D. & Verner, Dorte & Wiebelt, Manfred, 2016. "Climate change impacts and household resilience: Prospects for 2050 in Brazil, Mexico, and Peru," Food policy reports 978-0-89629-581-0, International Food Policy Research Institute (IFPRI).
    8. Paff, K. & Timlin, D. & Fleisher, D.H., 2023. "A comparison of wheat leaf-appearance rate submodules for DSSAT CROPSIM-CERES (CSCER)," Ecological Modelling, Elsevier, vol. 482(C).
    9. Sonia Quiroga & Cristina Suárez & Juan Diego Solís & Pablo Martínez-Juárez, 2017. "A microeconometric analysis of climate change drivers for coffee crops transition to cacao in Mesoamerican countries," Proceedings of Economics and Finance Conferences 4507415, International Institute of Social and Economic Sciences.
    10. Mitter, Hermine & Schmid, Erwin, 2019. "Computing the economic value of climate information for water stress management exemplified by crop production in Austria," Agricultural Water Management, Elsevier, vol. 221(C), pages 430-448.
    11. Dono, Gabriele & Cortignani, Raffaele & Giraldo, Luca & Doro, Luca & Roggero, Pier Paolo, 2014. "Assessing the awareness of climate change as a factor of adaptation in the agricultural sector," 2014 Third Congress, June 25-27, 2014, Alghero, Italy 173110, Italian Association of Agricultural and Applied Economics (AIEAA).
    12. Xiong, Wei & Balkovič, Juraj & van der Velde, Marijn & Zhang, Xuesong & Izaurralde, R. César & Skalský, Rastislav & Lin, Erda & Mueller, Nathan & Obersteiner, Michael, 2014. "A calibration procedure to improve global rice yield simulations with EPIC," Ecological Modelling, Elsevier, vol. 273(C), pages 128-139.
    13. Žalud, Zdeněk & Hlavinka, Petr & Prokeš, Karel & Semerádová, Daniela & Balek Jan, & Trnka, Miroslav, 2017. "Impacts of water availability and drought on maize yield – A comparison of 16 indicators," Agricultural Water Management, Elsevier, vol. 188(C), pages 126-135.
    14. Wittwer, Raphaël A. & Klaus, Valentin H. & Miranda Oliveira, Emily & Sun, Qing & Liu, Yujie & Gilgen, Anna K. & Buchmann, Nina & van der Heijden, Marcel G.A., 2023. "Limited capability of organic farming and conservation tillage to enhance agroecosystem resilience to severe drought," Agricultural Systems, Elsevier, vol. 211(C).
    15. Mitter, Hermine & Schmid, Erwin, 2021. "Informing groundwater policies in semi-arid agricultural production regions under stochastic climate scenario impacts," Ecological Economics, Elsevier, vol. 180(C).
    16. Sabina Thaler & Herbert Formayer & Gerhard Kubu & Miroslav Trnka & Josef Eitzinger, 2021. "Effects of Bias-Corrected Regional Climate Projections and Their Spatial Resolutions on Crop Model Results under Different Climatic and Soil Conditions in Austria," Agriculture, MDPI, vol. 11(11), pages 1-39, October.
    17. Wang, Zhiqiang & Ye, Li & Jiang, Jingyi & Fan, Yida & Zhang, Xiaoran, 2022. "Review of application of EPIC crop growth model," Ecological Modelling, Elsevier, vol. 467(C).
    18. Bucheli, Janic & Visse, Margot & Herrera, Juan & Häner, Lilia Levy & Tack, Jesse & Finger, Robert, 2022. "Precipitation causes quality losses of economic relevance in wheat production," 96th Annual Conference, April 4-6, 2022, K U Leuven, Belgium 321208, Agricultural Economics Society - AES.
    19. Elise Wach, 2021. "Market Dependency as Prohibitive of Agroecology and Food Sovereignty—A Case Study of the Agrarian Transition in the Scottish Highlands," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    20. Robert Finger & Nadja El Benni, 2021. "Farm income in European agriculture: new perspectives on measurement and implications for policy evaluation," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 48(2), pages 253-265.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:168:y:2019:i:c:p:168-180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.