IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2022-04-49.html
   My bibliography  Save this article

Air Quality and Winter Heating: Some Evidence from China

Author

Listed:
  • Yannan Gao

    (Faculty of Economics, Chulalongkorn University, Bangkok, Thailand; & School of Economics, Shandong Women s University, Jinan, China.)

  • San Sampattavanija

    (Faculty of Economics, Chulalongkorn University, Bangkok, Thailand)

Abstract

This paper analyzes the effects of central winter heating prevailing in North China on air pollution level. Qin-Mountains and Huai-River borderline that distinguishes the heating and non-heating areas is considered to be a good quasi natural experiment. Regression discontinuity design as well as relevant robustness checks and placebo tests are combined to verify the effects. Distinctions of the effects regarding different groups of areas located in different latitudes are also taken into consideration. Finally, we find that central winter heating contributes to the growth of all major air pollutants of 17.62% on average between non- and heating seasons considering all important cities in heating areas in north China excluding the effects brought by other natural conditions like weather. As latitude increases, central heating contributes more to air pollution level. In the coldest areas, the contribution to the increase of winter air pollutants can reach more than 60% for PM2.5.

Suggested Citation

  • Yannan Gao & San Sampattavanija, 2022. "Air Quality and Winter Heating: Some Evidence from China," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 455-469, July.
  • Handle: RePEc:eco:journ2:2022-04-49
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/13088/6860
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/13088
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guo, Jin & Huang, Ying & Wei, Chu, 2015. "North–South debate on district heating: Evidence from a household survey," Energy Policy, Elsevier, vol. 86(C), pages 295-302.
    2. Hu, Shan & Yan, Da & Cui, Ying & Guo, Siyue, 2016. "Urban residential heating in hot summer and cold winter zones of China—Status, modeling, and scenarios to 2030," Energy Policy, Elsevier, vol. 92(C), pages 158-170.
    3. Persson, Urban & Werner, Sven, 2011. "Heat distribution and the future competitiveness of district heating," Applied Energy, Elsevier, vol. 88(3), pages 568-576, March.
    4. Gong, Mei & Werner, Sven, 2015. "An assessment of district heating research in China," Renewable Energy, Elsevier, vol. 84(C), pages 97-105.
    5. Nielsen, Steffen & Möller, Bernd, 2013. "GIS based analysis of future district heating potential in Denmark," Energy, Elsevier, vol. 57(C), pages 458-468.
    6. Yihsu Chen & Alexander Whalley, 2012. "Green Infrastructure: The Effects of Urban Rail Transit on Air Quality," American Economic Journal: Economic Policy, American Economic Association, vol. 4(1), pages 58-97, February.
    7. Nilsson, Stefan Forsaeus & Reidhav, Charlotte & Lygnerud, Kristina & Werner, Sven, 2008. "Sparse district-heating in Sweden," Applied Energy, Elsevier, vol. 85(7), pages 555-564, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yannan Gao & San Sampattavanija, 2023. "Central Heating Policy and Population Migration in China: An Empirical Study," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 312-319, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nielsen, Steffen, 2014. "A geographic method for high resolution spatial heat planning," Energy, Elsevier, vol. 67(C), pages 351-362.
    2. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    3. Mazhar, Abdur Rehman & Liu, Shuli & Shukla, Ashish, 2018. "A state of art review on the district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 420-439.
    4. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    5. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    6. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    7. Sachs, Julia & Moya, Diego & Giarola, Sara & Hawkes, Adam, 2019. "Clustered spatially and temporally resolved global heat and cooling energy demand in the residential sector," Applied Energy, Elsevier, vol. 250(C), pages 48-62.
    8. Yannan Gao & San Sampattavanija, 2023. "Central Heating Policy and Population Migration in China: An Empirical Study," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 312-319, July.
    9. Unternährer, Jérémy & Moret, Stefano & Joost, Stéphane & Maréchal, François, 2017. "Spatial clustering for district heating integration in urban energy systems: Application to geothermal energy," Applied Energy, Elsevier, vol. 190(C), pages 749-763.
    10. Gebremedhin, Alemayehu, 2012. "Introducing District Heating in a Norwegian town – Potential for reduced Local and Global Emissions," Applied Energy, Elsevier, vol. 95(C), pages 300-304.
    11. Stegnar, Gašper & Staničić, D. & Česen, M. & Čižman, J. & Pestotnik, S. & Prestor, J. & Urbančič, A. & Merše, S., 2019. "A framework for assessing the technical and economic potential of shallow geothermal energy in individual and district heating systems: A case study of Slovenia," Energy, Elsevier, vol. 180(C), pages 405-420.
    12. Hansen, C.H. & Gudmundsson, O. & Detlefsen, N., 2019. "Cost efficiency of district heating for low energy buildings of the future," Energy, Elsevier, vol. 177(C), pages 77-86.
    13. Lizana, Jesús & Ortiz, Carlos & Soltero, Víctor M. & Chacartegui, Ricardo, 2017. "District heating systems based on low-carbon energy technologies in Mediterranean areas," Energy, Elsevier, vol. 120(C), pages 397-416.
    14. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    15. Leurent, Martin & Da Costa, Pascal & Rämä, Miika & Persson, Urban & Jasserand, Frédéric, 2018. "Cost-benefit analysis of district heating systems using heat from nuclear plants in seven European countries," Energy, Elsevier, vol. 149(C), pages 454-472.
    16. Averfalk, Helge & Ingvarsson, Paul & Persson, Urban & Gong, Mei & Werner, Sven, 2017. "Large heat pumps in Swedish district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1275-1284.
    17. Lake, Andrew & Rezaie, Behanz & Beyerlein, Steven, 2017. "Review of district heating and cooling systems for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 417-425.
    18. Werner, Sven, 2017. "International review of district heating and cooling," Energy, Elsevier, vol. 137(C), pages 617-631.
    19. Huo, Tengfei & Xu, Linbo & Feng, Wei & Cai, Weiguang & Liu, Bingsheng, 2021. "Dynamic scenario simulations of carbon emission peak in China's city-scale urban residential building sector through 2050," Energy Policy, Elsevier, vol. 159(C).
    20. Bachmann, Max & Kriegel, Martin, 2023. "Assessing the heat distribution costs of linear and radial district heating networks: A methodological approach," Energy, Elsevier, vol. 276(C).

    More about this item

    Keywords

    air pollution; central winter heating; North China; Qin-Mountains and Huai-River; PM2.5;
    All these keywords.

    JEL classification:

    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics
    • Q3 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation
    • R1 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2022-04-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.