IDEAS home Printed from https://ideas.repec.org/a/eco/journ1/2017-03-90.html
   My bibliography  Save this article

Bankruptcy and Insolvency: An Exploration of Relevant Theories

Author

Listed:
  • Adegbemi Babatunde Onakoya

    (Department of Economics, Banking and Finance, Babcock University, Ilishan - Remo, Nigeria,)

  • Ayooluwa Eunice Olotu

    (Department of Accounting, Babcock University, Ilishan - Remo, Nigeria)

Abstract

The essence of the law on bankruptcy is to collect the debt of an entity and distribute such asset among the contending claimholders. It is, also meant to resolve the broad issues of business failure in the context of the imminent or indeed the actual collapse of the indebted entity. The objective of the study is to explore relevant theories guiding the procedure of distribution or entitlement in bankruptcy among a group of agents. The study employed exploratory research method via an extended literature review, to investigate the underlying principles guiding the allocation of a given amount of a perfectly divisible good among a group of agents. The results of this extended literature review indicate that the procedure of distribution or entitlement in bankruptcy is supported by five of the theories reviewed while only value based theory posits the absence of any cogent solution to the financial distress of the debtor. The knowledge of theories is not enough for business survival, the ability to predict the possible occurrence of business failures is necessary. Market based models including the stock market option valuation approach perform better than the earlier models which rely heavily on historical accounting figures.

Suggested Citation

  • Adegbemi Babatunde Onakoya & Ayooluwa Eunice Olotu, 2017. "Bankruptcy and Insolvency: An Exploration of Relevant Theories," International Journal of Economics and Financial Issues, Econjournals, vol. 7(3), pages 706-712.
  • Handle: RePEc:eco:journ1:2017-03-90
    as

    Download full text from publisher

    File URL: http://www.econjournals.com/index.php/ijefi/article/download/4652/pdf
    Download Restriction: no

    File URL: http://www.econjournals.com/index.php/ijefi/article/view/4652/pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jackson, Richard H.G. & Wood, Anthony, 2013. "The performance of insolvency prediction and credit risk models in the UK: A comparative study," The British Accounting Review, Elsevier, vol. 45(3), pages 183-202.
    2. Lensberg, Terje & Eilifsen, Aasmund & McKee, Thomas E., 2006. "Bankruptcy theory development and classification via genetic programming," European Journal of Operational Research, Elsevier, vol. 169(2), pages 677-697, March.
    3. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    4. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
    5. Robert Aumann, 2010. "Some non-superadditive games, and their Shapley values, in the Talmud," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(1), pages 3-10, March.
    6. Calleja, Pedro & Borm, Peter & Hendrickx, Ruud, 2005. "Multi-issue allocation situations," European Journal of Operational Research, Elsevier, vol. 164(3), pages 730-747, August.
    7. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    8. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    9. Lorenzo-Freire, S. & Alonso-Meijide, J.M. & Casas-Mendez, B. & Hendrickx, R.L.P., 2005. "Balanced Contributions for Multi-Issue Allocation Situations," Discussion Paper 2005-93, Tilburg University, Center for Economic Research.
    10. Alexander Karpov & Semyon Yurkov, 2012. "Generalized bankruptcy problem," HSE Working papers WP BRP 08/FE/2012, National Research University Higher School of Economics.
    11. Sayantan Ghosal & Marcus Miller, 2003. "Co-ordination Failure, Moral Hazard and Sovereign Bankruptcy Procedures," Economic Journal, Royal Economic Society, vol. 113(487), pages 276-304, April.
    12. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    13. Aumann, Robert J. & Maschler, Michael, 1985. "Game theoretic analysis of a bankruptcy problem from the Talmud," Journal of Economic Theory, Elsevier, vol. 36(2), pages 195-213, August.
    14. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexey Litvinenko, 2023. "A Comparative Analysis of Altman's Z-Score and T. Jury's Cash-Based Credit Risk Models with The Application to The Production Company and The Data for The Years 2016-2022," Journal of Accounting and Management Information Systems, Faculty of Accounting and Management Information Systems, The Bucharest University of Economic Studies, vol. 22(3), pages 518-553, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
    2. Juraini Zainol Abidin & Nur Adiana Hiau Abdullah & Karren Lee-Hwei Khaw, 2020. "Predicting SMEs Failure: Logistic Regression vs Artificial Neural Network Models," Capital Markets Review, Malaysian Finance Association, vol. 28(2), pages 29-41.
    3. Kumar, Rahul & Deb, Soumya Guha & Mukherjee, Shubhadeep, 2020. "Do words reveal the latent truth? Identifying communication patterns of corporate losers," Journal of Behavioral and Experimental Finance, Elsevier, vol. 26(C).
    4. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    5. Marielle de Jong & Lauren Stagnol, 2016. "A fundamental bond index including solvency criteria," Journal of Asset Management, Palgrave Macmillan, vol. 17(4), pages 280-294, July.
    6. Zhang, Xuan & Ouyang, Ruolan & Liu, Ding & Xu, Liao, 2020. "Determinants of corporate default risk in China: The role of financial constraints," Economic Modelling, Elsevier, vol. 92(C), pages 87-98.
    7. Catherine Refait, 2000. "Estimation du risque de défaut par une modélisation stochastique du bilan : Application à des firmes industrielles françaises," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-03718527, HAL.
    8. Duc Hong Vo & Binh Ninh Vo Pham & Chi Minh Ho & Michael McAleer, 2019. "Corporate Financial Distress of Industry Level Listings in Vietnam," JRFM, MDPI, vol. 12(4), pages 1-17, September.
    9. Adler Haymans Manurung & Derwin Suhartono & Benny Hutahayan & Noptovius Halimawan, 2023. "Probability Bankruptcy Using Support Vector Regression Machines," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 13(1), pages 1-3.
    10. Frieda Rikkers & Andre E. Thibeault, 2009. "A Structural form Default Prediction Model for SMEs, Evidence from the Dutch Market," Multinational Finance Journal, Multinational Finance Journal, vol. 13(3-4), pages 229-264, September.
    11. Tomasz Korol, 2019. "Dynamic Bankruptcy Prediction Models for European Enterprises," JRFM, MDPI, vol. 12(4), pages 1-15, December.
    12. Vo, D.H. & Pham, B.V.-N. & Pham, T.V.-T. & McAleer, M.J., 2019. "Corporate Financial Distress of Industry Level Listings in an Emerging Market," Econometric Institute Research Papers EI2019-15, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    13. Scalzer, Rodrigo S. & Rodrigues, Adriano & Macedo, Marcelo Álvaro da S. & Wanke, Peter, 2019. "Financial distress in electricity distributors from the perspective of Brazilian regulation," Energy Policy, Elsevier, vol. 125(C), pages 250-259.
    14. Antonio Trujillo-Ponce & Reyes Samaniego-Medina & Clara Cardone-Riportella, 2014. "Examining what best explains corporate credit risk: accounting-based versus market-based models," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 15(2), pages 253-276, April.
    15. Zhou Lu & Zhuyao Zhuo, 2021. "Modelling of Chinese corporate bond default – A machine learning approach," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(5), pages 6147-6191, December.
    16. Dagmar Camska & Jiri Klecka, 2020. "Comparison of Prediction Models Applied in Economic Recession and Expansion," JRFM, MDPI, vol. 13(3), pages 1-16, March.
    17. David Alaminos & Agustín del Castillo & Manuel Ángel Fernández, 2016. "A Global Model for Bankruptcy Prediction," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-18, November.
    18. Erika KOVALOVA, 2019. "Predictive Models Of Corporate Insolvency Risks," Proceedings of the INTERNATIONAL MANAGEMENT CONFERENCE, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 13(1), pages 989-995, November.
    19. B Korcan Ak & Patricia M Dechow & Yuan Sun & Annika Yu Wang, 2013. "The use of financial ratio models to help investors predict and interpret significant corporate events," Australian Journal of Management, Australian School of Business, vol. 38(3), pages 553-598, December.
    20. Alessandra Amendola & Francesco Giordano & Maria Lucia Parrella & Marialuisa Restaino, 2017. "Variable selection in high‐dimensional regression: a nonparametric procedure for business failure prediction," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(4), pages 355-368, August.

    More about this item

    Keywords

    Bankruptcy; Bankruptcy Theories; Exploratory Research; Genetic Programming Model;
    All these keywords.

    JEL classification:

    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation
    • K11 - Law and Economics - - Basic Areas of Law - - - Property Law
    • K12 - Law and Economics - - Basic Areas of Law - - - Contract Law

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ1:2017-03-90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.