IDEAS home Printed from https://ideas.repec.org/a/eco/journ1/2016-02-49.html
   My bibliography  Save this article

Effectiveness of a Cluster of Determinants to Increase Economic Growth Rate: A Combined Statistical Criteria Approach

Author

Listed:
  • Chee Yin Yip

    (Department of Economics, Faculty of Business and Finance, Universiti Tunku Abdul Rahman, Kampar, Perak, Malaysia)

  • Hock Eam Lim

    (College of Arts and Sciences (Economics), Universiti Utara Malaysia, Malaysia)

  • Hooi Hooi Lean

    (Economics Program, School of Social Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia)

Abstract

This paper attempts to estimate the effectiveness of a cluster of determinants to increase gross domestic product (GDP) growth rate by using a combined statistical criteria approach. First, combining three ranking measures i.e., partial regression coefficients, adjusted R2 and Bayesian information criterion (BIC) into one single ranking procedure for finding and ranking the impact of each determinant - Y-procedure. Second, ranking the effectiveness of a cluster of determinants, each of which has been Y-procedure ranked using F-statistics, adjusted R2 and BIC in increasing GDP growth rate - Y-average. The results show that sets of top five or more variables should be considered as one entity with respect to increasing GDP growth rate, and the degree of effectiveness increases if their Y-average of relative measures increases. On application of this Y-procedure and Y-average to Australian GDP growth rate, it is found that investment, current account balance, gross foreign liability, export and import have the highest impact and thus, these five variables should be given priority when constructing the relevant economic policies and allocation of funds towards increasing GDP growth rate specifically for the case of Australia

Suggested Citation

  • Chee Yin Yip & Hock Eam Lim & Hooi Hooi Lean, 2016. "Effectiveness of a Cluster of Determinants to Increase Economic Growth Rate: A Combined Statistical Criteria Approach," International Journal of Economics and Financial Issues, Econjournals, vol. 6(2), pages 728-735.
  • Handle: RePEc:eco:journ1:2016-02-49
    as

    Download full text from publisher

    File URL: http://www.econjournals.com/index.php/ijefi/article/download/2162/pdf
    Download Restriction: no

    File URL: http://www.econjournals.com/index.php/ijefi/article/view/2162/pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Easterly, William & Kremer, Michael & Pritchett, Lant & Summers, Lawrence H., 1993. "Good policy or good luck?: Country growth performance and temporary shocks," Journal of Monetary Economics, Elsevier, vol. 32(3), pages 459-483, December.
    2. Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
    3. Yacine AÏT‐SAHALI & Michael W. Brandt, 2001. "Variable Selection for Portfolio Choice," Journal of Finance, American Finance Association, vol. 56(4), pages 1297-1351, August.
    4. Banerjee, Anindya & Marcellino, Massimiliano, 2006. "Are there any reliable leading indicators for US inflation and GDP growth?," International Journal of Forecasting, Elsevier, vol. 22(1), pages 137-151.
    5. De Gregorio, Jose, 1992. "Economic growth in Latin America," Journal of Development Economics, Elsevier, vol. 39(1), pages 59-84, July.
    6. Marcin Kacperczyk & Clemens Sialm & Lu Zheng, 2005. "On the Industry Concentration of Actively Managed Equity Mutual Funds," Journal of Finance, American Finance Association, vol. 60(4), pages 1983-2011, August.
    7. Ang, Andrew & Bekaert, Geert & Wei, Min, 2007. "Do macro variables, asset markets, or surveys forecast inflation better?," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1163-1212, May.
    8. Leeb, Hannes & Pötscher, Benedikt M., 2008. "Can One Estimate The Unconditional Distribution Of Post-Model-Selection Estimators?," Econometric Theory, Cambridge University Press, vol. 24(2), pages 338-376, April.
    9. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
    10. Leeb, Hannes & Pötscher, Benedikt M., 2003. "The Finite-Sample Distribution Of Post-Model-Selection Estimators And Uniform Versus Nonuniform Approximations," Econometric Theory, Cambridge University Press, vol. 19(1), pages 100-142, February.
    11. Bruce E. Hansen, 2007. "Least Squares Model Averaging," Econometrica, Econometric Society, vol. 75(4), pages 1175-1189, July.
    12. Doukas, John A. & Kim, Chansog (Francis) & Pantzalis, Christos, 2006. "Divergence of Opinion and Equity Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 41(3), pages 573-606, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wan, Alan T.K. & Zhang, Xinyu & Zou, Guohua, 2010. "Least squares model averaging by Mallows criterion," Journal of Econometrics, Elsevier, vol. 156(2), pages 277-283, June.
    2. Liu, Chu-An, 2015. "Distribution theory of the least squares averaging estimator," Journal of Econometrics, Elsevier, vol. 186(1), pages 142-159.
    3. Magnus, Jan R. & Wan, Alan T.K. & Zhang, Xinyu, 2011. "Weighted average least squares estimation with nonspherical disturbances and an application to the Hong Kong housing market," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1331-1341, March.
    4. Schomaker, Michael & Wan, Alan T.K. & Heumann, Christian, 2010. "Frequentist Model Averaging with missing observations," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3336-3347, December.
    5. Zhang, Xinyu & Yu, Jihai, 2018. "Spatial weights matrix selection and model averaging for spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 203(1), pages 1-18.
    6. Leeb, Hannes & Pötscher, Benedikt M. & Ewald, Karl, 2014. "On various confidence intervals post-model-selection," MPRA Paper 52858, University Library of Munich, Germany.
    7. McCloskey, Adam, 2017. "Bonferroni-based size-correction for nonstandard testing problems," Journal of Econometrics, Elsevier, vol. 200(1), pages 17-35.
    8. Liu, Chu-An, 2012. "A plug-in averaging estimator for regressions with heteroskedastic errors," MPRA Paper 41414, University Library of Munich, Germany.
    9. Aman Ullah & Huansha Wang, 2013. "Parametric and Nonparametric Frequentist Model Selection and Model Averaging," Econometrics, MDPI, vol. 1(2), pages 1-23, September.
    10. Pötscher, Benedikt M., 2006. "The Distribution of Model Averaging Estimators and an Impossibility Result Regarding Its Estimation," MPRA Paper 73, University Library of Munich, Germany, revised Jul 2006.
    11. Schomaker, Michael & Heumann, Christian, 2014. "Model selection and model averaging after multiple imputation," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 758-770.
    12. Pötscher, Benedikt M. & Leeb, Hannes, 2009. "On the distribution of penalized maximum likelihood estimators: The LASSO, SCAD, and thresholding," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2065-2082, October.
    13. Tae-Hwy Lee & Zhou Xi & Ru Zhang, 2013. "Testing for Neglected Nonlinearity Using Regularized Artificial Neural Networks," Working Papers 201422, University of California at Riverside, Department of Economics, revised Apr 2012.
    14. Pötscher, Benedikt M. & Schneider, Ulrike, 2007. "On the distribution of the adaptive LASSO estimator," MPRA Paper 6913, University Library of Munich, Germany.
    15. Cheng, Xu & Hansen, Bruce E., 2015. "Forecasting with factor-augmented regression: A frequentist model averaging approach," Journal of Econometrics, Elsevier, vol. 186(2), pages 280-293.
    16. Bruce E. Hansen, 2007. "Least Squares Model Averaging," Econometrica, Econometric Society, vol. 75(4), pages 1175-1189, July.
    17. Xu Cheng & Bruce E. Hansen, 2012. "Forecasting with Factor-Augmented Regression: A Frequentist Model Averaging Approach, Second Version," PIER Working Paper Archive 13-061, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 03 Sep 2013.
    18. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
    19. Castle Jennifer L. & Doornik Jurgen A & Hendry David F., 2011. "Evaluating Automatic Model Selection," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-33, February.
    20. Hassler, Uwe, 2010. "Testing regression coefficients after model selection through sign restrictions," Economics Letters, Elsevier, vol. 107(2), pages 220-223, May.

    More about this item

    Keywords

    Prioritize; Allocation; Ranking Measures; Y-procedure; Y-average;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ1:2016-02-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.