IDEAS home Printed from https://ideas.repec.org/a/ebl/ecbull/eb-21-00572.html
   My bibliography  Save this article

On the efficiency of online soccer betting markets: a new methodology based on symbolic series

Author

Listed:
  • Salvatore Caruso

    (Zanasi & Partners)

  • Giuseppe Pernagallo

    (Collegio Carlo Alberto, University of Turin)

Abstract

We propose a new methodology based on symbolic series to test the weak form of efficiency for soccer betting markets. This purpose was accomplished by introducing a definition of returns for betting markets and then creating binary series using the notion of excess returns. We present an application of the method using Serie A and Premier League data.

Suggested Citation

  • Salvatore Caruso & Giuseppe Pernagallo, 2021. "On the efficiency of online soccer betting markets: a new methodology based on symbolic series," Economics Bulletin, AccessEcon, vol. 41(3), pages 1451-1460.
  • Handle: RePEc:ebl:ecbull:eb-21-00572
    as

    Download full text from publisher

    File URL: http://www.accessecon.com/Pubs/EB/2021/Volume41/EB-21-V41-I3-P124.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael Cain & David Law & David Peel, 2000. "The Favourite‐Longshot Bias and Market Efficiency in UK Football betting," Scottish Journal of Political Economy, Scottish Economic Society, vol. 47(1), pages 25-36, February.
    2. Richard E. Quandt, 1986. "Betting and Equilibrium," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 101(1), pages 201-207.
    3. Ioannis Asimakopoulos & John Goddard, 2004. "Forecasting football results and the efficiency of fixed-odds betting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(1), pages 51-66.
    4. Pernagallo, Giuseppe & Torrisi, Benedetto, 2019. "An empirical analysis on the degree of Gaussianity and long memory of financial returns in emerging economies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    5. Justin Wolfers & Eric Zitzewitz, 2004. "Prediction Markets," Journal of Economic Perspectives, American Economic Association, vol. 18(2), pages 107-126, Spring.
    6. Ferraresi, Massimiliano & Gucciardi, Gianluca, 2021. "Who chokes on a penalty kick? Social environment and individual performance during Covid-19 times," Economics Letters, Elsevier, vol. 203(C).
    7. Raymond D. Sauer, 1998. "The Economics of Wagering Markets," Journal of Economic Literature, American Economic Association, vol. 36(4), pages 2021-2064, December.
    8. repec:bla:econom:v:56:y:1989:i:223:p:323-41 is not listed on IDEAS
    9. Angelini, Giovanni & De Angelis, Luca, 2019. "Efficiency of online football betting markets," International Journal of Forecasting, Elsevier, vol. 35(2), pages 712-721.
    10. Lyn D. Pankoff, 1968. "Market Efficiency and Football Betting," The Journal of Business, University of Chicago Press, vol. 41, pages 203-203.
    11. Michael Cain & David Law & David Peel, 2003. "The Favourite‐Longshot Bias, Bookmaker Margins and Insider Trading in a Variety of Betting Markets," Bulletin of Economic Research, Wiley Blackwell, vol. 55(3), pages 263-273, July.
    12. Williams, Leighton Vaughan & Paton, David, 1997. "Why Is There a Favourite-Longshot Bias in British Racetrack Betting Markets?," Economic Journal, Royal Economic Society, vol. 107(440), pages 150-158, January.
    13. Nikolaos Vlastakis & George Dotsis & Raphael N. Markellos, 2009. "How efficient is the European football betting market? Evidence from arbitrage and trading strategies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(5), pages 426-444.
    14. Oikonomidis, Anastasios & Bruce, Alistair C. & Johnson, Johnnie E.V., 2015. "Does transparency imply efficiency? The case of the European soccer betting market," Economics Letters, Elsevier, vol. 128(C), pages 59-61.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kai Fischer & Justus Haucap, 2022. "Home advantage in professional soccer and betting market efficiency: The role of spectator crowds," Kyklos, Wiley Blackwell, vol. 75(2), pages 294-316, May.
    2. Nikolaos Vlastakis & George Dotsis & Raphael N. Markellos, 2009. "How efficient is the European football betting market? Evidence from arbitrage and trading strategies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(5), pages 426-444.
    3. Kai Fischer & Justus Haucap, 2020. "Betting Market Efficiency in the Presence of Unfamiliar Shocks: The Case of Ghost Games during the Covid-19 Pandemic," CESifo Working Paper Series 8526, CESifo.
    4. David Winkelmann & Marius Ötting & Christian Deutscher & Tomasz Makarewicz, 2024. "Are Betting Markets Inefficient? Evidence From Simulations and Real Data," Journal of Sports Economics, , vol. 25(1), pages 54-97, January.
    5. Goto, Shingo & Yamada, Toru, 2023. "What drives biased odds in sports betting markets: Bettors’ irrationality and the role of bookmakers," International Review of Economics & Finance, Elsevier, vol. 86(C), pages 252-270.
    6. Gross, Johannes & Rebeggiani, Luca, 2018. "Chance or Ability? The Efficiency of the Football Betting Market Revisited," MPRA Paper 87230, University Library of Munich, Germany.
    7. Stekler, H.O. & Sendor, David & Verlander, Richard, 2010. "Issues in sports forecasting," International Journal of Forecasting, Elsevier, vol. 26(3), pages 606-621, July.
      • Herman O. Stekler & David Sendor & Richard Verlander, 2009. "Issues in Sports Forecasting," Working Papers 2009-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    8. Jinook Jeong & Jee Young Kim & Yoon Jae Ro, 2019. "On the efficiency of racetrack betting market: a new test for the favourite-longshot bias," Applied Economics, Taylor & Francis Journals, vol. 51(54), pages 5817-5828, November.
    9. Ruud H. Koning & Renske Zijm, 2023. "Betting market efficiency and prediction in binary choice models," Annals of Operations Research, Springer, vol. 325(1), pages 135-148, June.
    10. Philip W. S. Newall & Dominic Cortis, 2021. "Are Sports Bettors Biased toward Longshots, Favorites, or Both? A Literature Review," Risks, MDPI, vol. 9(1), pages 1-9, January.
    11. David Paton & Leighton Vaughan Williams, 2005. "Forecasting outcomes in spread betting markets: can bettors use 'quarbs' to beat the book?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(2), pages 139-154.
    12. Pascal Flurin Meier & Raphael Flepp & Egon Franck, 2021. "Are sports betting markets semistrong efficient? Evidence from the COVID-19 pandemic," Working Papers 387, University of Zurich, Department of Business Administration (IBW).
    13. Jirí Lahvicka, 2014. "The Fibonacci Strategy Revisited: Can You Really Make Money by Betting on Soccer Draws?," Journal of Gambling Business and Economics, University of Buckingham Press, vol. 8(2), pages 72-77.
    14. Martin Kukuk & Stefan Winter, 2008. "An Alternative Explanation of the Favorite-Longshot Bias," Journal of Gambling Business and Economics, University of Buckingham Press, vol. 2(2), pages 79-96, September.
    15. Jaume García & Levi Pérez & Plácido Rodríguez, 2017. "Forecasting football match results: are the many smarter than the few?," Chapters, in: Plácido Rodríguez & Brad R. Humphreys & Robert Simmons (ed.), The Economics of Sports Betting, chapter 5, pages 71-91, Edward Elgar Publishing.
    16. S Lessmann & M-C Sung & J E V Johnson, 2011. "Towards a methodology for measuring the true degree of efficiency in a speculative market," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(12), pages 2120-2132, December.
    17. Erik Snowberg & Justin Wolfers, 2010. "Explaining the Favorite-Long Shot Bias: Is it Risk-Love or Misperceptions?," Journal of Political Economy, University of Chicago Press, vol. 118(4), pages 723-746, August.
    18. Angelini, Giovanni & De Angelis, Luca & Singleton, Carl, 2022. "Informational efficiency and behaviour within in-play prediction markets," International Journal of Forecasting, Elsevier, vol. 38(1), pages 282-299.
    19. Maschke Mario & Schmidt Ulrich, 2011. "Das Wettmonopol in Deutschland: Status quo und Reformansätze," Zeitschrift für Wirtschaftspolitik, De Gruyter, vol. 60(1), pages 110-124, April.
    20. Babatunde Buraimo & David Peel & Rob Simmons, 2013. "Systematic Positive Expected Returns in the UK Fixed Odds Betting Market: An Analysis of the Fink Tank Predictions," IJFS, MDPI, vol. 1(4), pages 1-15, December.

    More about this item

    Keywords

    Econometric Modelling; Efficient Market Hypothesis; Financial Economics; Information Theory;
    All these keywords.

    JEL classification:

    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • G1 - Financial Economics - - General Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ebl:ecbull:eb-21-00572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: John P. Conley (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.