IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v527y2019ics0378437119307538.html
   My bibliography  Save this article

An empirical analysis on the degree of Gaussianity and long memory of financial returns in emerging economies

Author

Listed:
  • Pernagallo, Giuseppe
  • Torrisi, Benedetto

Abstract

In this work we investigated empirically if the behaviour of daily log-returns of 12 emerging economies’ stock market indices corroborates the “fat tails” hypothesis and if these series show long memory. These findings are important to assess the probability of observing “extreme” events, the distribution for financial models and the predictability of returns for these economies. Graphical techniques and statistical tests suggest the non-normality of daily returns of these indices, whereas the Student’s t-distribution and the stable Paretian distribution model adequately the data. The Hurst exponents oscillate between 0.51 and 0.62 proving that a certain degree of long memory is present in the series. Our findings show that the stock market of emerging economies is highly similar to stock markets of developed Countries

Suggested Citation

  • Pernagallo, Giuseppe & Torrisi, Benedetto, 2019. "An empirical analysis on the degree of Gaussianity and long memory of financial returns in emerging economies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
  • Handle: RePEc:eee:phsmap:v:527:y:2019:i:c:s0378437119307538
    DOI: 10.1016/j.physa.2019.121296
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119307538
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.121296?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Molina-Muñoz, Jesús & Mora-Valencia, Andrés & Perote, Javier, 2020. "Market-crash forecasting based on the dynamics of the alpha-stable distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    2. Pernagallo, Giuseppe & Torrisi, Benedetto, 2020. "Blindfolded monkeys or financial analysts: Who is worth your money? New evidence on informational inefficiencies in the U.S. stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    3. Xiao, Di & Wang, Jun, 2021. "Attitude interaction for financial price behaviours by contact system with small-world network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    4. Salvatore Caruso & Giuseppe Pernagallo, 2021. "On the efficiency of online soccer betting markets: a new methodology based on symbolic series," Economics Bulletin, AccessEcon, vol. 41(3), pages 1451-1460.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:527:y:2019:i:c:s0378437119307538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.