IDEAS home Printed from https://ideas.repec.org/a/ebl/ecbull/eb-17-00030.html
   My bibliography  Save this article

On log-symmetric duration models applied to high frequency financial data

Author

Listed:
  • Helton Saulo

    (Department of Statistics, University of Brasília, Brasília, Brazil)

  • Jeremias Leão

    (Department of Statistics, Federal University of Amazonas, Brazil)

Abstract

This paper deals with a new generalization of autoregressive conditional duration (ACD) models. In special, we propose a new family of ACD models based on a class of log-symmetric distributions. In this new class, it is possible to model both median and skewness of the duration time distribution. We discuss maximum likelihood estimation of the model parameters. For illustrative purposes, we analyze a high frequency financial data set from the German DAX in 2016.

Suggested Citation

  • Helton Saulo & Jeremias Leão, 2017. "On log-symmetric duration models applied to high frequency financial data," Economics Bulletin, AccessEcon, vol. 37(2), pages 1089-1097.
  • Handle: RePEc:ebl:ecbull:eb-17-00030
    as

    Download full text from publisher

    File URL: http://www.accessecon.com/Pubs/EB/2017/Volume37/EB-17-V37-I2-P95.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fernandes, Marcelo & Grammig, Joachim, 2006. "A family of autoregressive conditional duration models," Journal of Econometrics, Elsevier, vol. 130(1), pages 1-23, January.
    2. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    3. De Luca, Giovanni & Zuccolotto, Paola, 2006. "Regime-switching Pareto distributions for ACD models," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2179-2191, December.
    4. Zhang, Michael Yuanjie & Russell, Jeffrey R. & Tsay, Ruey S., 2001. "A nonlinear autoregressive conditional duration model with applications to financial transaction data," Journal of Econometrics, Elsevier, vol. 104(1), pages 179-207, August.
    5. Luc Bauwens & Pierre Giot, 2000. "The Logarithmic ACD Model: An Application to the Bid-Ask Quote Process of Three NYSE Stocks," Annals of Economics and Statistics, GENES, issue 60, pages 117-149.
    6. Meitz, Mika & Terasvirta, Timo, 2006. "Evaluating Models of Autoregressive Conditional Duration," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 104-124, January.
    7. repec:adr:anecst:y:2000:i:60:p:05 is not listed on IDEAS
    8. Luis Vanegas & Gilberto Paula, 2015. "A semiparametric approach for joint modeling of median and skewness," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 110-135, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saulo, Helton & Balakrishnan, Narayanaswamy & Vila, Roberto, 2023. "On a quantile autoregressive conditional duration model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 425-448.
    2. Marcelo Ventura & Helton Saulo & Victor Leiva & Sandro Monsueto, 2019. "Log‐symmetric regression models: information criteria and application to movie business and industry data with economic implications," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 35(4), pages 963-977, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saulo, Helton & Balakrishnan, Narayanaswamy & Vila, Roberto, 2023. "On a quantile autoregressive conditional duration model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 425-448.
    2. Bhatti, Chad R., 2010. "The Birnbaum–Saunders autoregressive conditional duration model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(10), pages 2062-2078.
    3. Lee, Sangyeol & Oh, Haejune, 2015. "Entropy test and residual empirical process for autoregressive conditional duration models," Computational Statistics & Data Analysis, Elsevier, vol. 86(C), pages 1-12.
    4. Danúbia R. Cunha & Roberto Vila & Helton Saulo & Rodrigo N. Fernandez, 2020. "A General Family of Autoregressive Conditional Duration Models Applied to High-Frequency Financial Data," JRFM, MDPI, vol. 13(3), pages 1-20, March.
    5. Monteiro, André A., 2009. "The econometrics of randomly spaced financial data: a survey," DES - Working Papers. Statistics and Econometrics. WS ws097924, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Perera, Indeewara & Koul, Hira L., 2017. "Fitting a two phase threshold multiplicative error model," Journal of Econometrics, Elsevier, vol. 197(2), pages 348-367.
    7. Yiing Fei Tan & Kok Haur Ng & You Beng Koh & Shelton Peiris, 2022. "Modelling Trade Durations Using Dynamic Logarithmic Component ACD Model with Extended Generalised Inverse Gaussian Distribution," Mathematics, MDPI, vol. 10(10), pages 1-20, May.
    8. Roman Huptas, 2016. "The UHF-GARCH-Type Model in the Analysis of Intraday Volatility and Price Durations – the Bayesian Approach," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 8(1), pages 1-20, March.
    9. Allen, David & Chan, Felix & McAleer, Michael & Peiris, Shelton, 2008. "Finite sample properties of the QMLE for the Log-ACD model: Application to Australian stocks," Journal of Econometrics, Elsevier, vol. 147(1), pages 163-185, November.
    10. Marcelo Fernandes & Marcelo Cunha Medeiros & Alvaro Veiga, 2006. "A (semi-)parametric functional coefficient autoregressive conditional duration model," Textos para discussão 535, Department of Economics PUC-Rio (Brazil).
    11. Roman Huptas, 2019. "Point forecasting of intraday volume using Bayesian autoregressive conditional volume models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(4), pages 293-310, July.
    12. Yong Shi & Wei Dai & Wen Long & Bo Li, 2021. "Improved ACD-based financial trade durations prediction leveraging LSTM networks and Attention Mechanism," Papers 2101.02736, arXiv.org.
    13. Roman Huptas, 2014. "Bayesian Estimation and Prediction for ACD Models in the Analysis of Trade Durations from the Polish Stock Market," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 6(4), pages 237-273, December.
    14. Nowak, Sylwia & Anderson, Heather M., 2014. "How does public information affect the frequency of trading in airline stocks?," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 26-38.
    15. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    16. Pipat Wongsaart & Jiti Gao, 2011. "Nonparametric Kernel Testing in Semiparametric Autoregressive Conditional Duration Model," Monash Econometrics and Business Statistics Working Papers 18/11, Monash University, Department of Econometrics and Business Statistics.
    17. Gurgul Henryk & Machno Artur, 2017. "Trade Pattern on Warsaw Stock Exchange and Prediction of Number of Trades," Statistics in Transition New Series, Polish Statistical Association, vol. 18(1), pages 91-114, March.
    18. Hautsch, Nikolaus & Jeleskovic, Vahidin, 2008. "Modelling high-frequency volatility and liquidity using multiplicative error models," SFB 649 Discussion Papers 2008-047, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    19. repec:hum:wpaper:sfb649dp2008-047 is not listed on IDEAS
    20. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    21. repec:wyi:journl:002120 is not listed on IDEAS
    22. Anatolyev, Stanislav, 2009. "Dynamic modeling under linear-exponential loss," Economic Modelling, Elsevier, vol. 26(1), pages 82-89, January.
    23. Gómez-Déniz, E. & Pérez-Rodríguez, J.V., 2019. "Modelling bimodality of length of tourist stay," Annals of Tourism Research, Elsevier, vol. 75(C), pages 131-151.

    More about this item

    Keywords

    Log-symmetric distributions; likelihood method; high frequency data; autoregressive conditional;
    All these keywords.

    JEL classification:

    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ebl:ecbull:eb-17-00030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: John P. Conley (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.