IDEAS home Printed from https://ideas.repec.org/a/ebl/ecbull/eb-13-00654.html
   My bibliography  Save this article

Adjustment costs in a variant of Uzawa's steady-state growth theorem

Author

Listed:
  • Andreas Irmen

    (University of Luxembourg)

Abstract

Uzawa´s theorem (Uzawa (1961)) is extended to allow for adjustment costs in the process of capital accumulation. A new steady-state growth theorem with adjustment costs establishes that capital-augmenting technical change may arise in steady state. This is in sharp contrast to Uzawa´s original finding. In a growing economy this possibility arises since diminishing returns in the production of capital cause a gap between the growth of gross capital investments and the growth of capital. In steady state, capital-augmenting technical change has the role to fill this gap. The discussion of the new theorem characterizes the conditions under which a steady-state path with capital-augmenting technical change exists.

Suggested Citation

  • Andreas Irmen, 2013. "Adjustment costs in a variant of Uzawa's steady-state growth theorem," Economics Bulletin, AccessEcon, vol. 33(4), pages 2860-2873.
  • Handle: RePEc:ebl:ecbull:eb-13-00654
    as

    Download full text from publisher

    File URL: http://www.accessecon.com/Pubs/EB/2013/Volume33/EB-13-V33-I4-P268.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. H. Uzawa, 1961. "Neutral Inventions and the Stability of Growth Equilibrium," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 28(2), pages 117-124.
    2. Irmen, Andreas, 2018. "A Generalized Steady-State Growth Theorem," Macroeconomic Dynamics, Cambridge University Press, vol. 22(4), pages 779-804, June.
    3. Charles I. Jones & Dean Scrimgeour, 2008. "A New Proof of Uzawa's Steady-State Growth Theorem," The Review of Economics and Statistics, MIT Press, vol. 90(1), pages 180-182, February.
    4. Rainer Klump & Peter McAdam & Alpo Willman, 2007. "Factor Substitution and Factor-Augmenting Technical Progress in the United States: A Normalized Supply-Side System Approach," The Review of Economics and Statistics, MIT Press, vol. 89(1), pages 183-192, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ekkehart Schlicht, 2016. "Directed Technical Change and Capital Deepening: A Reconsideration of Kaldor's Technical Progress Function," Metroeconomica, Wiley Blackwell, vol. 67(1), pages 119-151, February.
    2. Li, Defu & Bental, Benjamin, 2019. "A Generalized Growth Model and the Direction of Technological Progress," MPRA Paper 96509, University Library of Munich, Germany.
    3. Li, Defu & Bental, Benjamin, 2016. "What determines the direction of technological progress?," MPRA Paper 71517, University Library of Munich, Germany.
    4. Li, Defu & Huang, Jiuli, 2016. "The steady-state growth conditions of neoclassical growth model and Uzawa theorem revisited," MPRA Paper 71512, University Library of Munich, Germany, revised 21 May 2016.
    5. LI, Defu & Bental, Benjamin, 2015. "Growth with Endogenous Direction of Technical Change," MPRA Paper 64124, University Library of Munich, Germany.
    6. Li, Defu & Bental, Benjamin & Huang, Jiuli, 2016. "Stationary Growth and the Impossibility of Capital Efficiency Gains," MPRA Paper 71516, University Library of Munich, Germany.
    7. Li, Defu & Benjamin, Bental, 2021. "Factor Supply Elasticities, Returns to Scale, and the Direction of Technological Progress," MPRA Paper 109920, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Irmen, Andreas, 2018. "A Generalized Steady-State Growth Theorem," Macroeconomic Dynamics, Cambridge University Press, vol. 22(4), pages 779-804, June.
    2. Gregory Casey & Ryo Horii, 2019. "A Multi-factor Uzawa Growth Theorem and Endogenous Capital-Augmenting Technological Change," ISER Discussion Paper 1051, Institute of Social and Economic Research, Osaka University.
    3. Gene M. Grossman & Elhanan Helpman & Ezra Oberfield & Thomas Sampson, 2017. "Balanced Growth Despite Uzawa," American Economic Review, American Economic Association, vol. 107(4), pages 1293-1312, April.
    4. Andreas Irmen, 2017. "Capital‐ And Labor‐Saving Technical Change In An Aging Economy," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 58(1), pages 261-285, February.
    5. Zuzana Smeets Kristkova & Cornelis Gardebroek & Michiel van Dijk & Hans van Meijl, 2017. "The impact of R&D on factor-augmenting technical change – an empirical assessment at the sector level," Economic Systems Research, Taylor & Francis Journals, vol. 29(3), pages 385-417, July.
    6. Irmen, Andreas, 2011. "Steady-state growth and the elasticity of substitution," Journal of Economic Dynamics and Control, Elsevier, vol. 35(8), pages 1215-1228, August.
    7. Growiec, Jakub & McAdam, Peter & Mućk, Jakub, 2018. "Endogenous labor share cycles: Theory and evidence," Journal of Economic Dynamics and Control, Elsevier, vol. 87(C), pages 74-93.
    8. Roberto Veneziani & Luca Zamparelli & Daniele Tavani & Luca Zamparelli, 2017. "Endogenous Technical Change In Alternative Theories Of Growth And Distribution," Journal of Economic Surveys, Wiley Blackwell, vol. 31(5), pages 1272-1303, December.
    9. repec:wvu:wpaper:10-06 is not listed on IDEAS
    10. Dongya Koh & Raül Santaeulàlia-Llopis, 2017. "Countercyclical Elasticity of Substitution," Working Papers 946, Barcelona School of Economics.
    11. Andreas Irmen & Amer Tabakovic, 2020. "Factor Income Distribution And Endogenous Economic Growth: Piketty Meets Romer," Economic Inquiry, Western Economic Association International, vol. 58(3), pages 1342-1361, July.
    12. Kenneth G. Stewart & Jiang Li, 2018. "Are factor biases and substitution identifiable? The Canadian evidence," Canadian Journal of Economics, Canadian Economics Association, vol. 51(2), pages 528-548, May.
    13. Miguel A. Leon-Ledesma & Mathan Satchi, 2010. "A Note on Balanced Growth with a less than unitary Elasticity of Substitution," Studies in Economics 1007, School of Economics, University of Kent.
    14. Sherman Robinson & Hans Meijl & Dirk Willenbockel & Hugo Valin & Shinichiro Fujimori & Toshihiko Masui & Ron Sands & Marshall Wise & Katherine Calvin & Petr Havlik & Daniel Mason d'Croz & Andrzej Tabe, 2014. "Comparing supply-side specifications in models of global agriculture and the food system," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 21-35, January.
    15. Clemens Struck & Adnan Velic, 2017. "To Augment Or Not To Augment? A Conjecture On Asymmetric Technical Change," Trinity Economics Papers tep0117, Trinity College Dublin, Department of Economics.
    16. Kenneth G. Stewart, 2018. "Normalized CES supply systems: Replication of Klump, McAdam, and Willman (2007)," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(2), pages 290-296, March.
    17. Mehdi Senouci & Hugo Mauron, 2020. "A new model of technical change and an application to the Solow model," Working Papers hal-02919860, HAL.
    18. de la Fonteijne, Marcel R., 2018. "Why the concept of Hicks, Harrod, Solow neutral and even non-neutral augmented technical progress is flawed in principle in any economic model," MPRA Paper 107730, University Library of Munich, Germany.
    19. Gregory Casey, 2018. "Technology-Driven Unemployment," 2018 Meeting Papers 302, Society for Economic Dynamics.
    20. Miguel A. Leon-Ledesma & Mathan Satchi, 2015. "Appropriate Technology and the Labour Share," Studies in Economics 1505, School of Economics, University of Kent, revised Nov 2016.
    21. Clemens Struck & Adnan Velic, 2017. "Automation, New Technology, and Non-Homothetic Preferences," Trinity Economics Papers tep1217, Trinity College Dublin, Department of Economics.

    More about this item

    Keywords

    Steady-State Growth; Capital Accumulation; Adjustment Costs; Uzawa´s Theorem;
    All these keywords.

    JEL classification:

    • E1 - Macroeconomics and Monetary Economics - - General Aggregative Models
    • O4 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ebl:ecbull:eb-13-00654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: John P. Conley (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.