IDEAS home Printed from https://ideas.repec.org/a/ebl/ecbull/eb-13-00603.html
   My bibliography  Save this article

Allocation of costs to clean up a polluted river: an axiomatic approach

Author

Listed:
  • Wilson da C. Vieira

    (Federal University of Vicosa, Brazil)

Abstract

This paper proposes a method to share the costs of cleaning up a polluted river among the agents located along it. This method is based on a model of pollutant transport and the polluter pays principle. We provide an axiomatic characterization for this method and investigate its relationship with both the (weighted) Shapley value and the tau-value of the corresponding cost game generated from the problem. We show that the solution of the proposed method coincides with both the weighted Shapley value and the tau-value.

Suggested Citation

  • Wilson da C. Vieira, 2015. "Allocation of costs to clean up a polluted river: an axiomatic approach," Economics Bulletin, AccessEcon, vol. 35(2), pages 1216-1226.
  • Handle: RePEc:ebl:ecbull:eb-13-00603
    as

    Download full text from publisher

    File URL: http://www.accessecon.com/Pubs/EB/2015/Volume35/EB-15-V35-I2-P125.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haeringer, Guillaume, 2006. "A new weight scheme for the Shapley value," Mathematical Social Sciences, Elsevier, vol. 52(1), pages 88-98, July.
    2. Tijs, S.H., 1987. "An axiomatization of the ô-value," Other publications TiSEM 5536ac66-86f3-49fb-9e7d-2, Tilburg University, School of Economics and Management.
    3. Monderer, Dov & Samet, Dov & Shapley, Lloyd S, 1992. "Weighted Values and the Core," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(1), pages 27-39.
    4. Tijs, Stef H., 1987. "An axiomatization of the [tau]-value," Mathematical Social Sciences, Elsevier, vol. 13(2), pages 177-181, April.
    5. Hung, Ming-Feng & Shaw, Daigee, 2005. "A trading-ratio system for trading water pollution discharge permits," Journal of Environmental Economics and Management, Elsevier, vol. 49(1), pages 83-102, January.
    6. Martin J. Osborne & Ariel Rubinstein, 1994. "A Course in Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262650401, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guang Zhang & Erfang Shan & Liying Kang & Yanxia Dong, 2017. "Two efficient values of cooperative games with graph structure based on $$\tau $$ τ -values," Journal of Combinatorial Optimization, Springer, vol. 34(2), pages 462-482, August.
    2. Bergantiños, Gustavo & Moreno-Ternero, Juan D., 2020. "Allocating extra revenues from broadcasting sports leagues," Journal of Mathematical Economics, Elsevier, vol. 90(C), pages 65-73.
    3. Tobias Hiller, 2021. "Hierarchy and the size of a firm," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 68(3), pages 389-404, September.
    4. Demuynck, Thomas & Rock, Bram De & Ginsburgh, Victor, 2016. "The transfer paradox in welfare space," Journal of Mathematical Economics, Elsevier, vol. 62(C), pages 1-4.
    5. Branzei, Rodica & Dimitrov, Dinko & Tijs, Stef, 2004. "Hypercubes and compromise values for cooperative fuzzy games," European Journal of Operational Research, Elsevier, vol. 155(3), pages 733-740, June.
    6. Quant, M. & Borm, P.E.M. & Reijnierse, J.H. & Voorneveld, M., 2002. "Characterizations of Solutions in Digraph Competitions," Discussion Paper 2002-113, Tilburg University, Center for Economic Research.
    7. Wenzhong Li & Genjiu Xu & Hao Sun, 2020. "Maximizing the Minimal Satisfaction—Characterizations of Two Proportional Values," Mathematics, MDPI, vol. 8(7), pages 1-17, July.
    8. Youngsub Chun & Manipushpak Mitra & Suresh Mutuswami, 2019. "Recent developments in the queueing problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 1-23, April.
    9. Béal, Sylvain & Ferrières, Sylvain & Rémila, Eric & Solal, Philippe, 2018. "The proportional Shapley value and applications," Games and Economic Behavior, Elsevier, vol. 108(C), pages 93-112.
    10. Fukuda, E. & Tijs, S.H. & Brânzei, R. & Muto, S., 2002. "Compromising in Partition Function Form Games and Cooperation in Perfect Extensive Form," Discussion Paper 2002-117, Tilburg University, Center for Economic Research.
    11. Rene van den Brink & Youngsub Chun & Yukihiko Funaki & Zhengxing Zou, 2021. "Balanced Externalities and the Proportional Allocation of Nonseparable Contributions," Tinbergen Institute Discussion Papers 21-024/II, Tinbergen Institute.
    12. Youngsub Chun & Nari Park & Duygu Yengin, 2015. "Coincidence of Cooperative Game Theoretic Solutions in the Appointment Problem," School of Economics and Public Policy Working Papers 2015-09, University of Adelaide, School of Economics and Public Policy.
    13. Zheng, Xiao-Xue & Liu, Zhi & Li, Kevin W. & Huang, Jun & Chen, Ji, 2019. "Cooperative game approaches to coordinating a three-echelon closed-loop supply chain with fairness concerns," International Journal of Production Economics, Elsevier, vol. 212(C), pages 92-110.
    14. Marieke Quant & Peter Borm & Hans Reijnierse & Mark Voorneveld, 2003. "On a compromise social choice correspondence," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 11(2), pages 311-324, December.
    15. Churkin, Andrey & Bialek, Janusz & Pozo, David & Sauma, Enzo & Korgin, Nikolay, 2021. "Review of Cooperative Game Theory applications in power system expansion planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    16. Radzik, Tadeusz, 2012. "A new look at the role of players’ weights in the weighted Shapley value," European Journal of Operational Research, Elsevier, vol. 223(2), pages 407-416.
    17. Kai Zhang & Haishu Lu & Bin Wang, 2024. "Benefit Distribution Mechanism of a Cooperative Alliance for Basin Water Resources from the Perspective of Cooperative Game Theory," Sustainability, MDPI, vol. 16(16), pages 1-33, August.
    18. Pierre Dehez, 2017. "On Harsanyi Dividends and Asymmetric Values," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-36, September.
    19. van den Brink, René & Chun, Youngsub & Funaki, Yukihiko & Zou, Zhengxing, 2023. "Balanced externalities and the proportional allocation of nonseparable contributions," European Journal of Operational Research, Elsevier, vol. 307(2), pages 975-983.
    20. Jan Bok & Martin Černý, 2024. "1-convex extensions of incomplete cooperative games and the average value," Theory and Decision, Springer, vol. 96(2), pages 239-268, March.

    More about this item

    Keywords

    Water pollution; cost allocation; weighted Shapley value; tau-value.;
    All these keywords.

    JEL classification:

    • C7 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ebl:ecbull:eb-13-00603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: John P. Conley (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.