IDEAS home Printed from https://ideas.repec.org/a/ebl/ecbull/eb-06q00004.html
   My bibliography  Save this article

Optimal soil management and environmental policy

Author

Listed:
  • Gilles Lafforgue

    (INRA-LERNA, University of Toulouse)

  • Walid Oueslati

    (INH)

Abstract

This paper studies the effects of environmental policy on the farmer's soil optimal management. We consider a dynamic economic model of soil erosion where the intensity use of inputs allows the farmer to control soil losses. Inputs use induces a pollution which is accentuated by the soil fragility. We show, at the steady state, that environmental tax induces a more conservative farmer behavior for soil, but in some cases it can exacerbate pollution. These effects can be moderated when farmer introduces abatement activity.

Suggested Citation

  • Gilles Lafforgue & Walid Oueslati, 2007. "Optimal soil management and environmental policy," Economics Bulletin, AccessEcon, vol. 17(3), pages 1-10.
  • Handle: RePEc:ebl:ecbull:eb-06q00004
    as

    Download full text from publisher

    File URL: http://www.accessecon.com/pubs/EB/2007/Volume17/EB-06Q00004A.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Harry R. Clarke, 1992. "The Supply Of Non‐Degraded Agricultural Land," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 36(1), pages 31-56, April.
    2. Barrett, Scott, 1991. "Optimal soil conservation and the reform of agricultural pricing policies," Journal of Development Economics, Elsevier, vol. 36(2), pages 167-187, October.
    3. Loehman, Edna T. & Randhir, Timothy O., 1999. "Alleviating soil erosion/pollution stock externalities: alternative roles for government," Ecological Economics, Elsevier, vol. 30(1), pages 29-46, July.
    4. Kenneth E. McConnell, 1983. "An Economic Model of Soil Conservation," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 65(1), pages 83-89.
    5. Edward B. Barbier, 1990. "The Farm-Level Economics of Soil Conservation: The Uplands of Java," Land Economics, University of Wisconsin Press, vol. 66(2), pages 199-211.
    6. Hediger, Werner, 2003. "Sustainable farm income in the presence of soil erosion: an agricultural Hartwick rule," Ecological Economics, Elsevier, vol. 45(2), pages 221-236, June.
    7. Jeffrey T. LaFrance, 1992. "Do Increased Commodity Prices Lead To More Or Less Soil Degradation?," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 36(1), pages 57-82, April.
    8. Goetz, Renan U. & Zilberman, David, 2000. "The dynamics of spatial pollution: The case of phosphorus runoff from agricultural land," Journal of Economic Dynamics and Control, Elsevier, vol. 24(1), pages 143-163, January.
    9. Renan U. Goetz, 1997. "Diversification in Agricultural Production: A Dynamic Model of Optimal Cropping to Manage Soil Erosion," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(2), pages 341-356.
    10. Grepperud, S., 1997. "Soil conservation as an investment in land," Journal of Development Economics, Elsevier, vol. 54(2), pages 455-467, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teddie Nakhumwa & Rashid Hassan, 2012. "Optimal Management of Soil Quality Stocks and Long-Term Consequences of Land Degradation for Smallholder Farmers in Malawi," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 52(3), pages 415-433, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:ebl:ecbull:v:17:y:2007:i:3:p:1-10 is not listed on IDEAS
    2. Nkonya, Ephraim M. & Barkley, Andrew P. & Hamilton, Stephen F. & Bernardo, Daniel J., 1999. "Environmental And Economic Impacts Of Soil Erosion And Fertility Mining In Northern Tanzania," 1999 Annual meeting, August 8-11, Nashville, TN 21623, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    3. Yoshito Takasaki & Oliver T. Coomes & Christian Abizaid & Stéphanie Brisson, 2014. "An Efficient Nonmarket Institution under Imperfect Markets: Labor Sharing for Tropical Forest Clearing," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(3), pages 711-732.
    4. Yoshito Takasaki, 2011. "Economic models of shifting cultivation: a review," Tsukuba Economics Working Papers 2011-006, Faculty of Humanities and Social Sciences, University of Tsukuba.
    5. Coxhead, Ian A. & Demeke, Bayou, 2006. "Modeling Spatially Differentiated Environmental Policy in a Philippine Watershed: Tradeoffs between Environmental Protection and Poverty Reduction," 2006 Annual meeting, July 23-26, Long Beach, CA 21115, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    6. Amrita Chatterjee & Arpita Ghose, 2016. "A dynamic economic model of soil conservation and drought tolerance involving genetically modified crops," Journal of Social and Economic Development, Springer;Institute for Social and Economic Change, vol. 18(1), pages 40-66, October.
    7. Lichtenberg, Erik, 2006. ""A note on soil depth, failing markets and agricultural pricing": Comment," Journal of Development Economics, Elsevier, vol. 81(1), pages 236-243, October.
    8. Amrita Chatterjee & Arpita Ghose, 2015. "A Dynamic Economic Model of Soil Conservation Involving Genetically Modified Crop," Working Papers id:6623, eSocialSciences.
    9. Willassen, Yngve, 2004. "On the economics of the optimal fallow-cultivation cycle," Journal of Economic Dynamics and Control, Elsevier, vol. 28(8), pages 1541-1556, June.
    10. Ian A. COXHEAD, 1995. "Economic Modeling Of Land Degradation In Developing Countries," Staff Papers 385, University of Wisconsin Madison, AAE, revised May 1996.
    11. Ekbom, Anders & Brown, Gardner M. & Sterner, Thomas, 2009. "Muddy Waters: Soil Erosion and Downstream Externalities," Working Papers in Economics 341, University of Gothenburg, Department of Economics.
    12. Bond, Craig A. & Farzin, Y. Hossein, 2004. "A Portfolio Of Nutrients: Soil And Sustainability," 2004 Annual meeting, August 1-4, Denver, CO 20035, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    13. Cacho, Oscar J., 1999. "Valuing Agroforestry In The Presence Of Land Degradation," Working Papers 12931, University of New England, School of Economics.
    14. Lichtenberg, Erik, 2002. "Agriculture and the environment," Handbook of Agricultural Economics, in: B. L. Gardner & G. C. Rausser (ed.), Handbook of Agricultural Economics, edition 1, volume 2, chapter 23, pages 1249-1313, Elsevier.
    15. Amrita Chatterjee & Arpita Ghose, 2015. "A Dynamic Economic Model of Soil Conservation Involving Genetically Modified Crop," Working Papers 2015-096, Madras School of Economics,Chennai,India.
    16. Shively, Gerald E., 2001. "Poverty, consumption risk, and soil conservation," Journal of Development Economics, Elsevier, vol. 65(2), pages 267-290, August.
    17. Hediger, Werner, 2003. "Sustainable farm income in the presence of soil erosion: an agricultural Hartwick rule," Ecological Economics, Elsevier, vol. 45(2), pages 221-236, June.
    18. Pierre D. Ouattara & Eugene Kouassi & Aklesso Y. G. Egbendewe & Oluyele Akinkugbe, 2018. "Climate Uncertainty And Agricultural Soil Conservation Investment Decisions," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(02), pages 1-23, May.
    19. Alice Issanchou & Karine Daniel & Pierre Dupraz & Carole Ropars-Collet, 2018. "Soil resource and the profitability and sustainability of farms: A soil quality investment model," Working Papers SMART 18-01, INRAE UMR SMART.
    20. Ekbom, Anders, 2009. "Determinants of Soil Capital," Working Papers in Economics 339, University of Gothenburg, Department of Economics.
    21. Goetz, Renan, 1995. "Diversification and Sustainable Agricultural Production-The Case of Soil Erosion," CUDARE Working Papers 201477, University of California, Berkeley, Department of Agricultural and Resource Economics.

    More about this item

    Keywords

    environmental policy;

    JEL classification:

    • Q0 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General
    • H4 - Public Economics - - Publicly Provided Goods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ebl:ecbull:eb-06q00004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: John P. Conley (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.