IDEAS home Printed from https://ideas.repec.org/a/dem/demres/v51y2024i16.html
   My bibliography  Save this article

Tools for analysing fuzzy clusters of sequences data

Author

Listed:
  • Raffaella Piccarreta

    (Università Commerciale Luigi Bocconi)

  • Emanuela Struffolino

    (Università degli Studi di Milano (UNIMI))

Abstract

Background: Sequence analysis is a set of tools increasingly used in demography and other social sciences to analyse longitudinal categorical data. Typically, single (e.g., education trajectories) or multiple parallel temporal processes (e.g., work and family) are analysed by using crisp clustering algorithms that reduce complexity by partitioning cases into exhaustive and mutually exclusive groups. Crisp partitions can be problematic when clusters are not clearly separated, as is often the case in social-science applications. An effective alternative strategy is fuzzy clustering, allowing cases to belong to different clusters with a different degree of membership. Objective: We extend the scarce literature on fuzzy clustering of sequences to the analysis of multiple trajectories jointly unfolding over time. We illustrate how to properly apply fuzzy algorithms in this case. We propose some criteria (the fuzzy silhouette coefficients) to support the choice of the number of clusters to extract, and we introduce the gradient index plot to enhance the substantive interpretation of (multichannel) fuzzy-clustering results. Methods: We first describe the general features of fuzzy clustering applied to sequence data. We then use an illustrative example of multidomain sequence analysis applied to family and work trajectories to present the fuzzy silhouette coefficient and the gradient index plot. Contribution: These research materials provide practitioners with analytical and graphical tools that facilitate the use of fuzzy-clustering algorithms to address research questions concerning the link between the unfolding of multiple trajectories in sequence analysis, for demographic research and beyond.

Suggested Citation

  • Raffaella Piccarreta & Emanuela Struffolino, 2024. "Tools for analysing fuzzy clusters of sequences data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 51(16), pages 553-576.
  • Handle: RePEc:dem:demres:v:51:y:2024:i:16
    DOI: 10.4054/DemRes.2024.51.16
    as

    Download full text from publisher

    File URL: https://www.demographic-research.org/volumes/vol51/16/51-16.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.4054/DemRes.2024.51.16?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    sequence analysis; fuzzy clustering; visualization; silhouette coefficient; weighted gradient index plots;
    All these keywords.

    JEL classification:

    • J1 - Labor and Demographic Economics - - Demographic Economics
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dem:demres:v:51:y:2024:i:16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Editorial Office (email available below). General contact details of provider: https://www.demogr.mpg.de/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.