IDEAS home Printed from https://ideas.repec.org/a/dem/demres/v49y2023i42.html
   My bibliography  Save this article

Bayesian implementation of Rogers–Castro model migration schedules: An alternative technique for parameter estimation

Author

Listed:
  • Jessie Yeung

    (University of Toronto)

  • Monica Alexander

    (University of Toronto)

  • Tim Riffe

    (Euskal Herriko Unibertsitatea (University of the Basque Country))

Abstract

Background: The Rogers–Castro model migration schedule is a key model for migration trends over the life course. It is applied in a wide variety of settings by demographers to examine the relationship between age and migration intensity. This model is nonlinear and can have up to 13 parameters, which can make estimation difficult. Existing techniques for parameter estimation can lead to issues such as nonconvergence, sensitivity to initial values, or optimization algorithms that do not reach the global optimum. Objective: We propose a new method of estimating Rogers–Castro model migration schedule parameters that overcomes most common difficulties. Methods: We apply a Bayesian framework for fitting the Rogers–Castro model. We also provide the R package rcbayes with functions to easily apply our proposed methodology. Results: We illustrate how this model and the R package can be used in a variety of settings by applying the model to data from the American Community Survey. Contribution: We provide a novel and easy-to-use approach for estimating Rogers–Castro model parameters. Our approach is formalized in an R package that makes parameter estimation and Bayesian methods more accessible for demographers and other researchers.

Suggested Citation

  • Jessie Yeung & Monica Alexander & Tim Riffe, 2023. "Bayesian implementation of Rogers–Castro model migration schedules: An alternative technique for parameter estimation," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 49(42), pages 1201-1228.
  • Handle: RePEc:dem:demres:v:49:y:2023:i:42
    DOI: 10.4054/DemRes.2023.49.42
    as

    Download full text from publisher

    File URL: https://www.demographic-research.org/volumes/vol49/42/49-42.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.4054/DemRes.2023.49.42?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrei Rogers & Luis Castro & Megan Lea, 2005. "Model Migration Schedules: Three Alternative Linear Parameter Estimation Methods," Mathematical Population Studies, Taylor & Francis Journals, vol. 12(1), pages 17-38.
    2. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    3. Tom Wilson, 2010. "Model migration schedules incorporating student migration peaks," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 23(8), pages 191-222.
    4. Andrei Rogers & James Raymer, 1999. "Fitting Observed Demographic Rates with the Multiexponential Model Schedule: An Assessment of Two Estimation Programs," Review of Urban & Regional Development Studies, Wiley Blackwell, vol. 11(1), pages 1-10, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jenny Garcia Arias, 2024. "The Demography of Crisis‐Driven Outflows from Venezuela," Population and Development Review, The Population Council, Inc., vol. 50(3), pages 643-675, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aude Bernard & Martin Bell, 2015. "Smoothing internal migration age profiles for comparative research," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 32(33), pages 915-948.
    2. Francis,David C. & Kubinec ,Robert, 2022. "Beyond Political Connections : A Measurement Model Approach to Estimating Firm-levelPolitical Influence in 41 Economies," Policy Research Working Paper Series 10119, The World Bank.
    3. Yongping Bao & Ludwig Danwitz & Fabian Dvorak & Sebastian Fehrler & Lars Hornuf & Hsuan Yu Lin & Bettina von Helversen, 2022. "Similarity and Consistency in Algorithm-Guided Exploration," CESifo Working Paper Series 10188, CESifo.
    4. Torsten Heinrich & Jangho Yang & Shuanping Dai, 2020. "Growth, development, and structural change at the firm-level: The example of the PR China," Papers 2012.14503, arXiv.org.
    5. Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    6. Xiaoyue Xi & Simon E. F. Spencer & Matthew Hall & M. Kate Grabowski & Joseph Kagaayi & Oliver Ratmann & Rakai Health Sciences Program and PANGEA‐HIV, 2022. "Inferring the sources of HIV infection in Africa from deep‐sequence data with semi‐parametric Bayesian Poisson flow models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 517-540, June.
    7. Luo, Nanyu & Ji, Feng & Han, Yuting & He, Jinbo & Zhang, Xiaoya, 2024. "Fitting item response theory models using deep learning computational frameworks," OSF Preprints tjxab, Center for Open Science.
    8. Joseph B. Bak-Coleman & Ian Kennedy & Morgan Wack & Andrew Beers & Joseph S. Schafer & Emma S. Spiro & Kate Starbird & Jevin D. West, 2022. "Combining interventions to reduce the spread of viral misinformation," Nature Human Behaviour, Nature, vol. 6(10), pages 1372-1380, October.
    9. David M. Phillippo & Sofia Dias & A. E. Ades & Mark Belger & Alan Brnabic & Alexander Schacht & Daniel Saure & Zbigniew Kadziola & Nicky J. Welton, 2020. "Multilevel network meta‐regression for population‐adjusted treatment comparisons," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1189-1210, June.
    10. Alina Ferecatu & Arnaud Bruyn & Prithwiraj Mukherjee, 2024. "Silently killing your panelists one email at a time: The true cost of email solicitations," Journal of the Academy of Marketing Science, Springer, vol. 52(4), pages 1216-1239, July.
    11. Antosik, Liubov & Ivashina, Natalya, 2019. "Modeling of spatial dependence in the migration flows of graduates of the higher education institutions of the Russian Federation," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 54, pages 70-89.
    12. Burbano, Vanessa & Padilla, Nicolas & Meier, Stephan, 2020. "Gender Differences in Preferences for Meaning at Work," IZA Discussion Papers 13053, Institute of Labor Economics (IZA).
    13. Robert Kubinec & Haillie Na‐Kyung Lee & Andrey Tomashevskiy, 2021. "Politically connected companies are less likely to shutdown due to COVID‐19 restrictions," Social Science Quarterly, Southwestern Social Science Association, vol. 102(5), pages 2155-2169, September.
    14. Barrington-Leigh, C.P., 2024. "The econometrics of happiness: Are we underestimating the returns to education and income?," Journal of Public Economics, Elsevier, vol. 230(C).
    15. Salvatore Nunnari & Massimiliano Pozzi, 2022. "Meta-Analysis of Inequality Aversion Estimates," CESifo Working Paper Series 9851, CESifo.
    16. Andreas Kryger Jensen & Claus Thorn Ekstrøm, 2021. "Quantifying the trendiness of trends," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 98-121, January.
    17. Ilya Kashnitsky & Nikita Mkrtchyan & Oleg Leshukov, 2016. "Interregional Migration of Youths in Russia: A Comprehensive Analysis of Demographic Statistics," Voprosy obrazovaniya / Educational Studies Moscow, National Research University Higher School of Economics, issue 3, pages 169-203.
    18. Lauderdale, Benjamin E. & Bailey, Delia & Blumenau, Jack & Rivers, Douglas, 2020. "Model-based pre-election polling for national and sub-national outcomes in the US and UK," International Journal of Forecasting, Elsevier, vol. 36(2), pages 399-413.
    19. Tamara Broderick & Ryan Giordano & Rachael Meager, 2020. "An Automatic Finite-Sample Robustness Metric: When Can Dropping a Little Data Make a Big Difference?," Papers 2011.14999, arXiv.org, revised Jul 2023.
    20. Kenneth F. Kellner & Arielle W. Parsons & Roland Kays & Joshua J. Millspaugh & Christopher T. Rota, 2022. "A Two-Species Occupancy Model with a Continuous-Time Detection Process Reveals Spatial and Temporal Interactions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 321-338, June.

    More about this item

    JEL classification:

    • J1 - Labor and Demographic Economics - - Demographic Economics
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dem:demres:v:49:y:2023:i:42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Editorial Office (email available below). General contact details of provider: https://www.demogr.mpg.de/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.