IDEAS home Printed from https://ideas.repec.org/a/cup/macdyn/v12y2008i05p694-701_07.html
   My bibliography  Save this article

Constant-Elasticity-Of-Substitution Production Function

Author

Listed:
  • Nakamura, Hideki
  • Nakamura, Masakatsu

Abstract

We consider endogenous changes of inputs from labor to capital in the production of intermediate goods, i.e., a form of mechanization. We derive complementary relationships between capital accumulation and mechanization by assuming a Cobb–Douglas production function for the production of final goods from intermediate goods. A constant-elasticity-of-substitution production function in which the elasticity of substitution exceeds unity can be endogenously derived as the envelope of Cobb–Douglas production functions when the efficiency of inputs is assumed in a specific form. The difficulty of mechanization represents the elasticity of substitution.

Suggested Citation

  • Nakamura, Hideki & Nakamura, Masakatsu, 2008. "Constant-Elasticity-Of-Substitution Production Function," Macroeconomic Dynamics, Cambridge University Press, vol. 12(5), pages 694-701, November.
  • Handle: RePEc:cup:macdyn:v:12:y:2008:i:05:p:694-701_07
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1365100508070302/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joseph Zeira, 1998. "Workers, Machines, and Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1091-1117.
    2. Oded Galor & Andrew Mountford, 2004. "Trading Population for Productivity," GE, Growth, Math methods 0410001, University Library of Munich, Germany.
    3. Daron Acemoglu & Fabrizio Zilibotti, 2001. "Productivity Differences," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 116(2), pages 563-606.
    4. Charles I. Jones, 2005. "The Shape of Production Functions and the Direction of Technical Change," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(2), pages 517-549.
    5. Duffy, John & Papageorgiou, Chris, 2000. "A Cross-Country Empirical Investigation of the Aggregate Production Function Specification," Journal of Economic Growth, Springer, vol. 5(1), pages 87-120, March.
    6. Larry E. Jones & Rodolfo Manuelli, 1990. "A Convex Model of Equilibrium Growth," NBER Working Papers 3241, National Bureau of Economic Research, Inc.
    7. Jones, Larry E & Manuelli, Rodolfo E, 1990. "A Convex Model of Equilibrium Growth: Theory and Policy Implications," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 1008-1038, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Growiec, Jakub, 2013. "Factor-augmenting technology choice and monopolistic competition," Journal of Macroeconomics, Elsevier, vol. 38(PA), pages 86-94.
    2. Rainer Klump & Peter McAdam & Alpo Willman, 2012. "The Normalized Ces Production Function: Theory And Empirics," Journal of Economic Surveys, Wiley Blackwell, vol. 26(5), pages 769-799, December.
    3. Growiec, Jakub, 2018. "Factor-specific technology choice," Journal of Mathematical Economics, Elsevier, vol. 77(C), pages 1-14.
    4. Ryosuke Shimizu & Shohei Momoda, 2020. "Does Automation Technology increase Wage?," KIER Working Papers 1039, Kyoto University, Institute of Economic Research.
    5. Nakamura, Hideki, 2009. "Micro-foundation for a constant elasticity of substitution production function through mechanization," Journal of Macroeconomics, Elsevier, vol. 31(3), pages 464-472, September.
    6. Michael Knoblach & Fabian Stöckl, 2020. "What Determines The Elasticity Of Substitution Between Capital And Labor? A Literature Review," Journal of Economic Surveys, Wiley Blackwell, vol. 34(4), pages 847-875, September.
    7. Kemnitz, Alexander & Knoblach, Michael, 2020. "Endogenous sigma-augmenting technological change: An R&D-based approach," CEPIE Working Papers 02/20, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    8. Shimizu, Ryosuke & Momoda, Shohei, 2023. "Does automation technology increase wage?," Journal of Macroeconomics, Elsevier, vol. 77(C).
    9. Hideki Nakamura & Joseph Zeira, 2024. "Automation and unemployment: help is on the way," Journal of Economic Growth, Springer, vol. 29(2), pages 215-250, June.
    10. Ayad, Fayssal, 2023. "Mapping the path forward: A prospective model of natural resource depletion and sustainable development," Resources Policy, Elsevier, vol. 85(PA).
    11. Ryosuke Shimizu & Shohei Momoda, 2021. "Does Automation Technology increase Wage?," Discussion papers ron343, Policy Research Institute, Ministry of Finance Japan.
    12. Rao, T.V.S. Ramamohan, 2011. "CES as an Organizational Production Function," Indian Economic Review, Department of Economics, Delhi School of Economics, vol. 46(1), pages 69-81.
    13. Growiec, Jakub, 2013. "A microfoundation for normalized CES production functions with factor-augmenting technical change," Journal of Economic Dynamics and Control, Elsevier, vol. 37(11), pages 2336-2350.
    14. Hideki Nakamura, 2010. "Factor Substitution, Mechanization, And Economic Growth," The Japanese Economic Review, Japanese Economic Association, vol. 61(2), pages 266-281, June.
    15. Antony, Jürgen, 2014. "Technical change and the elasticity of factor substitution," Beiträge der Hochschule Pforzheim 147, Pforzheim University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakub Growiec, 2008. "A new class of production functions and an argument against purely labor‐augmenting technical change," International Journal of Economic Theory, The International Society for Economic Theory, vol. 4(4), pages 483-502, December.
    2. Capolupo, Rosa, 2009. "The New Growth Theories and Their Empirics after Twenty Years," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-72.
    3. Michael Knoblach & Fabian Stöckl, 2020. "What Determines The Elasticity Of Substitution Between Capital And Labor? A Literature Review," Journal of Economic Surveys, Wiley Blackwell, vol. 34(4), pages 847-875, September.
    4. Hideki Nakamura, 2010. "Factor Substitution, Mechanization, And Economic Growth," The Japanese Economic Review, Japanese Economic Association, vol. 61(2), pages 266-281, June.
    5. Hernando Zuleta, 2015. "Factor shares, inequality, and capital flows," Southern Economic Journal, John Wiley & Sons, vol. 82(2), pages 647-667, October.
    6. Young, Andrew T., 2010. "One of the things we know that ain't so: Is US labor's share relatively stable?," Journal of Macroeconomics, Elsevier, vol. 32(1), pages 90-102, March.
    7. Hernando Zuleta, 2011. "Factor Shares, Income Distribution and Capital Flows," DEGIT Conference Papers c016_003, DEGIT, Dynamics, Economic Growth, and International Trade.
    8. Zuleta, Hernando & Young, Andrew T., 2013. "Labor shares in a model of induced innovation," Structural Change and Economic Dynamics, Elsevier, vol. 24(C), pages 112-122.
    9. Palivos, Theodore & Karagiannis, Giannis, 2010. "The Elasticity Of Substitution As An Engine Of Growth," Macroeconomic Dynamics, Cambridge University Press, vol. 14(5), pages 617-628, November.
    10. Armando Sánchez-Vargas & José Manuel Márquez-Estrada & Eric Hernández-Ramírez, 2023. "Uncovering the Link Between the Theoretical and Probabilistic Models of the Global Production Function: A Copula Approach," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(2), pages 289-315, June.
    11. Francesco Caselli & Wilbur John Coleman II, 2006. "The World Technology Frontier," American Economic Review, American Economic Association, vol. 96(3), pages 499-522, June.
    12. Guimarães, Luís & Mazeda Gil, Pedro, 2022. "Explaining the Labor Share: Automation Vs Labor Market Institutions," Labour Economics, Elsevier, vol. 75(C).
    13. Litina, Anastasia & Palivos, Theodore, 2010. "The Behavior Of The Saving Rate In The Neoclassical Optimal Growth Model," Macroeconomic Dynamics, Cambridge University Press, vol. 14(4), pages 482-500, September.
    14. Manuel A. Gómez, 2006. "Equilibrium efficiency in the Uzawa-Lucas model with sector-specific externalities," Economics Bulletin, AccessEcon, vol. 8(3), pages 1-8.
    15. Miguel A. Leon-Ledesma & Mathan Satchi, 2015. "Appropriate Technology and the Labour Share," Studies in Economics 1505, School of Economics, University of Kent, revised Nov 2016.
    16. Nir Jaimovich & Sergio Rebelo, 2017. "Nonlinear Effects of Taxation on Growth," Journal of Political Economy, University of Chicago Press, vol. 125(1), pages 265-291.
    17. Lucciano Villacorta, 2016. "Estimating Country Heterogeneity in Capital - Labor Substitution Using Panel Data," Working Papers Central Bank of Chile 788, Central Bank of Chile.
    18. Daron Acemoglu, 2002. "Directed Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(4), pages 781-809.
    19. Jakub Growiec, 2023. "Industry 4.0? Framing the Digital Revolution and Its Long-Run Growth Consequences," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 4, pages 1-16.
    20. Miguel A León-Ledesma & Mathan Satchi, 2019. "Appropriate Technology and Balanced Growth," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(2), pages 807-835.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:macdyn:v:12:y:2008:i:05:p:694-701_07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/mdy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.