IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v5y1969i02p293-297_00.html
   My bibliography  Save this article

The optimal reinsurance treaty

Author

Listed:
  • Borch, Karl

Abstract

1. Some years ago I discussed optimal reinsurance treaties, without trying to give a precise definition of this term [1]. I suggested that a reinsurance contract could be called “most efficient” if it, for a given net premium, maximized the reduction of the variance in the claim distribution of the ceding company. I proved under fairly restricted conditions that the Stop Loss contract was most efficient in this respect.I do not consider this a particularly interesting result. I pointed out at the time that there are two parties to a reinsurance contract, and that an arrangement which is very attractive to one party, may be quite unacceptable to the other.2. In spite of my own reservations, it seems that this result —which I did not think deserved to be called a theorem—has caused some interest. Kahn [4] has proved that the result is valid under far more general conditions, and recently Ohlin [5] has proved that the result holds for a much more general class of measures of dispersion.In view of these generalizations it might be useful to state once more, why I think the original result has relatively little interest. In doing so, it is by no means my purpose to reduce the value of the mathematical generalizations of Kahn and Ohlin. Such work has a value in itself, whether the results are immediately useful or not. I merely want to point out that there are other lines of research, which appear more promising, if our purpose is to develop a realistic theory of insurance.

Suggested Citation

  • Borch, Karl, 1969. "The optimal reinsurance treaty," ASTIN Bulletin, Cambridge University Press, vol. 5(2), pages 293-297, May.
  • Handle: RePEc:cup:astinb:v:5:y:1969:i:02:p:293-297_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S051503610000814X/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Danping & Young, Virginia R., 2021. "Bowley solution of a mean–variance game in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 35-43.
    2. Guohui Guan & Zongxia Liang & Yilun Song, 2022. "A Stackelberg reinsurance-investment game under $\alpha$-maxmin mean-variance criterion and stochastic volatility," Papers 2212.14327, arXiv.org.
    3. Wenjun Jiang & Jiandong Ren & Ričardas Zitikis, 2017. "Optimal Reinsurance Policies under the VaR Risk Measure When the Interests of Both the Cedent and the Reinsurer Are Taken into Account," Risks, MDPI, vol. 5(1), pages 1-22, February.
    4. Chen, Yanhong & Cheung, Ka Chun & Zhang, Yiying, 2024. "Bowley solution under the reinsurer's default risk," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 36-61.
    5. Ambrose Lo & Zhaofeng Tang, 2019. "Pareto-optimal reinsurance policies in the presence of individual risk constraints," Annals of Operations Research, Springer, vol. 274(1), pages 395-423, March.
    6. Chi, Yichun & Tan, Ken Seng & Zhuang, Sheng Chao, 2020. "A Bowley solution with limited ceded risk for a monopolistic reinsurer," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 188-201.
    7. Guan, Guohui & Hu, Xiang, 2022. "Equilibrium mean–variance reinsurance and investment strategies for a general insurance company under smooth ambiguity," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    8. Cai, Jun & Liu, Haiyan & Wang, Ruodu, 2017. "Pareto-optimal reinsurance arrangements under general model settings," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 24-37.
    9. Amir T. Payandeh-Najafabadi & Ali Panahi-Bazaz, 2017. "An Optimal Combination of Proportional and Stop-Loss Reinsurance Contracts From Insurer's and Reinsurer's Viewpoints," Papers 1701.05450, arXiv.org.
    10. Cheung, Ka Chun & He, Wanting & Wang, He, 2023. "Multi-constrained optimal reinsurance model from the duality perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 199-214.
    11. Zhang, Caibin & Liang, Zhibin & Yuan, Yu, 2024. "Stochastic differential investment and reinsurance game between an insurer and a reinsurer under thinning dependence structure," European Journal of Operational Research, Elsevier, vol. 315(1), pages 213-227.
    12. Hu, Duni & Chen, Shou & Wang, Hailong, 2018. "Robust reinsurance contracts with uncertainty about jump risk," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1175-1188.
    13. Cheung, Ka Chun & Yam, Sheung Chi Phillip & Zhang, Yiying, 2019. "Risk-adjusted Bowley reinsurance under distorted probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 64-72.
    14. Hu, Duni & Wang, Hailong, 2019. "Reinsurance contract design when the insurer is ambiguity-averse," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 241-255.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:5:y:1969:i:02:p:293-297_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.