IDEAS home Printed from https://ideas.repec.org/a/col/000443/019744.html
   My bibliography  Save this article

Statistical and computational techniques for extraction of underlying systematic risk factors: a comparative study in the Mexican Stock Exchange

Author

Listed:
  • Rogelio Ladrón de Guevara Cortés
  • Salvador Torra Porras
  • Enric Monte Moreno

Abstract

This paper compares the dimension reduction or feature extraction techniques, e.g., Principal Component Analysis, Factor Analysis, Independent Component Analysis and Neural Networks Principal Component Analysis, which are used as techniques for extracting the underlying systematic risk factors driving the returns on equities of the Mexican Stock Exchange, under a statistical approach to the Arbitrage Pricing Theory. We carry out our research according to two different perspectives. First, we evaluate them from a theoretical and matrix scope, making a parallelism among their particular mixing and demixing processes, as well as the attributes of the factors extracted by each method. Secondly, we accomplish an empirical study in order to measure the level of accuracy in the reconstruction of the original variables.

Suggested Citation

  • Rogelio Ladrón de Guevara Cortés & Salvador Torra Porras & Enric Monte Moreno, 2021. "Statistical and computational techniques for extraction of underlying systematic risk factors: a comparative study in the Mexican Stock Exchange," Revista Finanzas y Politica Economica, Universidad Católica de Colombia, vol. 13(2), pages 513-543, August.
  • Handle: RePEc:col:000443:019744
    as

    Download full text from publisher

    File URL: https://revfinypolecon.ucatolica.edu.co/article/view/3740
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    2. Colin Lizieri & Stephen Satchell & Qi Zhang, 2007. "The Underlying Return‐Generating Factors for REIT Returns: An Application of Independent Component Analysis," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 35(4), pages 569-598, December.
    3. Mabelle Sayah, 2016. "Analyzing and Comparing Basel's III Sensitivity Based Approach for the interest rate risk in the trading book," Post-Print hal-01217928, HAL.
    4. Francis X. Diebold & Jose A. Lopez, 1995. "Forecast evaluation and combination," Research Paper 9525, Federal Reserve Bank of New York.
    5. Fabio Bellini & Ernesto Salinelli, 2003. "Independent Component Analysis and Immunization: An Exploratory Study," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 6(07), pages 721-738.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jose A. Lopez, 2001. "Federal Reserve banks' imputed cost of equity capital," FRBSF Economic Letter, Federal Reserve Bank of San Francisco, issue aug10.
    2. Masud Alam, 2021. "Time Varying Risk in U.S. Housing Sector and Real Estate Investment Trusts Equity Return," Papers 2107.10455, arXiv.org.
    3. Baoqiang Zhan & Shu Zhang & Helen S. Du & Xiaoguang Yang, 2022. "Exploring Statistical Arbitrage Opportunities Using Machine Learning Strategy," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 861-882, October.
    4. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    5. Bonhomme, Stphane & Robin, Jean-Marc, 2009. "Consistent noisy independent component analysis," Journal of Econometrics, Elsevier, vol. 149(1), pages 12-25, April.
    6. Andros Gregoriou & Christos Ioannidis, 2007. "Generalized method of moments and present value tests of the consumption-capital asset pricing model under transactions costs: evidence from the UK stock market," Empirical Economics, Springer, vol. 32(1), pages 19-39, April.
    7. David E. Allen & Michael McAleer & Abhay K. Singh, 2019. "Daily market news sentiment and stock prices," Applied Economics, Taylor & Francis Journals, vol. 51(30), pages 3212-3235, June.
    8. Sellin, Peter, 1998. "Monetary Policy and the Stock Market: Theory and Empirical Evidence," Working Paper Series 72, Sveriges Riksbank (Central Bank of Sweden).
    9. Horst Entorf & Gösta Jamin, 2005. "The dollar and the German stock market: determination of exposure to and pricing of exchange rate risk using APTmodelling," The IUP Journal of Applied Economics, IUP Publications, vol. 0(6), pages 19-33, November.
    10. Pesaran, M. Hashem & Schuermann, Til & Treutler, Bjorn-Jakob & Weiner, Scott M., 2006. "Macroeconomic Dynamics and Credit Risk: A Global Perspective," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1211-1261, August.
    11. Rostagno, Luciano Martin, 2005. "Empirical tests of parametric and non-parametric Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) measures for the Brazilian stock market index," ISU General Staff Papers 2005010108000021878, Iowa State University, Department of Economics.
    12. Shaikh, Salman, 2013. "Investment Decisions by Analysts: A Case Study of KSE," MPRA Paper 53802, University Library of Munich, Germany.
    13. John H. Cochrane, 1999. "New facts in finance," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 23(Q III), pages 36-58.
    14. Patrick Gagliardini & Christian Gouriéroux, 2011. "Approximate Derivative Pricing for Large Classes of Homogeneous Assets with Systematic Risk," Journal of Financial Econometrics, Oxford University Press, vol. 9(2), pages 237-280, Spring.
    15. Boes, M.J., 2006. "Index options : Pricing, implied densities and returns," Other publications TiSEM e9ed8a9f-2472-430a-b666-9, Tilburg University, School of Economics and Management.
    16. Gehrig, Thomas & Jackson, Matthew, 1998. "Bid-ask spreads with indirect competition among specialists," Journal of Financial Markets, Elsevier, vol. 1(1), pages 89-119, April.
    17. M. Hashem Pesaran & Paolo Zaffaroni, 2004. "Model Averaging and Value-at-Risk Based Evaluation of Large Multi Asset Volatility Models for Risk Management," CESifo Working Paper Series 1358, CESifo.
    18. Veith, Stefan & Werner, Jörg R. & Zimmermann, Jochen, 2009. "Capital market response to emission rights returns: Evidence from the European power sector," Energy Economics, Elsevier, vol. 31(4), pages 605-613, July.
    19. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    20. Fernando M. Duarte & Carlo Rosa, 2015. "The equity risk premium: a review of models," Economic Policy Review, Federal Reserve Bank of New York, issue 2, pages 39-57.

    More about this item

    Keywords

    Neural networks principal component analysis; Independent component analysis; Factor analysis; Principal component analysis; Mexican stock exchange;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000443:019744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Universidad Católica de Colombia (email available below). General contact details of provider: https://edirc.repec.org/data/feuccco.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.